
Nearest Facility Location for Multiple

Customers using Voronoi Diagram

 Thesis submitted in partial fulfillment of the requirements

for the award of degree of

Master of Engineering

in

Computer Science and Engineering

Submitted By

Ravi Agarwal

(Roll No. 801132032)

Under the supervision of:

Dr. Deepak Garg

Associate Professor

COMPUTER SCIENCE AND ENGINEERING DEPARTMENT

THAPAR UNIVERSITY

PATIALA – 147004

July 2013

Page | i

Page | ii

Acknowledgement

I would like to express my deep sense of gratitude towards my supervisor, Dr.

Deepak Garg, Associate Professor, Computer Science and Engineering Department,

Thapar University, Patiala, for his invaluable help and guidance during the course of

thesis. I am highly indebt to him for constantly encouraging me by giving his critics

on my work. I am grateful to him for giving me the support and confidence that

helped me a lot in carrying out the research work in the present form. And for me, it

was an honor to work under his guidance.

 I also take the opportunity to thank Dr. Maninder Singh, Associate Professor and

Head, Computer Science and Engineering Department, Thapar University, Patiala, for

providing us with the adequate infrastructure in carrying out the research work.

I would also like to thank my parents and friends for their inspiration and ever

encouraging moral support, which went a long way in successful completion of my

thesis.

Above all, I would like to thank the almighty God for His blessings and for driving

me with faith, hope and courage in the thinnest of the times.

 Ravi Agarwal

Page | iii

Abstract

In present world it is hard to survive without new technologies and internet. New

technologies and applications have made our life much comfortable and luxurious.

Searching for a facility near to many customers is such a problem that even an

approximately correct answer can save lot of labor, time and money. The essence of

all the facility location problems is to determine the location of the facility and the

allocation of the demands of customers, under the condition of the minimum of the

cost. This work presents a possible solution for decision makers to reach facility

approximately nearer to all customers. In this thesis work an algorithm to tackle

nearest facility location for multiple customers has been proposed. It tackles the

problem by considering not only the aggregate distances of all customers but also the

maximum difference between the farthest customer and nearest customer. It takes

time of order O(n log n) as it is based on voronoi diagram of order O(n log n) and its

own time is of linear order.

The proposed algorithm tackles the problem of finding the nearest facility for multiple

customers by considering two criteria. The first one is minimizing the aggregate

distances i.e. sum of total distances covered by all the customers. The second one is

minimizing the maximum difference i.e. the difference between the farthest customer

and the nearest customer. The approach given here uses voronoi diagram construction

algorithm as its base algorithm. To find the voronoi diagram of a given space Plane

sweep algorithm or Fortune’s algorithm named after its inventor is used which

computes voronoi diagram in O(n log n) and is one the most efficient algorithm

known for computing voronoi diagram.

The proposed algorithm is tested for various test cases and the result is in accordance

with the expected answer for the problem. In future this application can be

implemented using hybrid techniques which are the combination of techniques to find

the nearest facility. The ultimate goal is to find the nearest facility as per the situation

and requirement in a fast and efficient manner.

Page | iv

 Table of Contents

Certificate .. i

Acknowledgement .. ii

Abstract ..iii

Table of Contents .. iv

List of Figures .. vi

List of Tables .. vii

List of Algorithms .. vii

Chapter 1 Introduction.. 1

1.1 Motivation .. 1

1.2 A brief review of voronoi diagrams ... 2

1.2.1 Definition and basic properties .. 2

1.2.2 Importance of voronoi diagrams ... 5

1.2.3 Variations of voronoi diagrams ... 6

1.2.4 Some applications of voronoi diagrams .. 8

Chapter 2 Literature Review .. 10

2.1 Various voronoi diagram construction algorithms ... 10

 2.1.1 Divide and conquer construction .. 10

 2.1.2 Construction by transformation .. 12

 2.1.3 Construction through Delaunay triangulation .. 12

 2.1.4 Higher dimensional embedding .. 13

 2.1.5 Incremental construction ... 13

 2.1.6 Dynamic construction ... 15

 2.1.7 Parallel construction.. 15

 2.1.8 Plane sweep construction .. 15

 2.2 Literature review of facility location problem .. 16

Page | v

Chapter 3 Problem statement ... 22

 3.1 Gap analysis and related work .. 22

 3.1.1 Nearest neighbor search .. 22

 3.1.2 Minisum facility location .. 23

 3.1.3 Minimax facility location .. 23

 3.1.4 Maxmin facility location ... 23

 3.2 Problem statement ... 23

 3.3 Problem formulation ... 23

Chapter 4 Implementation .. 25

 4.1 Preliminaries of Fortune’s algorithm .. 25

 4.1.1 Background of Fortune’s algorithm .. 25

 4.1.2 Data structure for Fortune’s algorithm ... 28

 4.2 Proposed algorithm ... 31

 4.2.1 Algorithm for nearest facility location for multiple customers 31

 4.2.2 Explanation of working of proposed algorithm .. 34

Chapter 5 Testing and results ... 35

 5.1 Test case 1 ... 35

 5.1.1 Verification for test case 1 .. 40

 5.1.2 Result of test case 1... 40

 5.2 Test case 2 ... 41

 5.2.1 Verification for test case 2 .. 41

 5.2.2 Result of test case 2... 42

 5.3 Test case 3 ... 43

 5.3.1 Verification for test case 3 .. 43

 5.3.2 Result of test case 3... 45

Chapter 6 Conclusion and future scope ... 46

References ... 48

Page | vi

 List of Figures

Figure 1.1 A single cell of voronoi diagram .. 3

Figure 1.2 A typical voronoi diagram .. 4

Figure 1.3 A largest empty circle of point q with respect to p....................................... 5

Figure 1.4 Largest empty circle defining the edge and vertex 5

Figure 1.5 Classification of voronoi diagram on the basis of different criteria 7

Figure 2.1 Divide and conquer approach ... 11

Figure 2.2 Voronoi and its dual Delaunay trianfualtion .. 12

Figure 2.3 Incremental algorithm in progress .. 14

Figure 4.1 Beach line and sweep line .. 25

Figure 4.2 Beach line is x-monotone ... 26

Figure 4.3 Stages of site event ... 27

Figure 4.4 Flowchart of voronoi diagram construction using Fortune’s plane sweep

algorithm .. 32

Figure 4.5 Flowchart of proposed algorithm ... 33

Figure 5.1 Facilities located for test case 1 .. 35

Figure 5.2 After one customer added in test case 1 ... 36

Figure 5.3 After two customers added in test case 1 ... 37

Figure 5.4 After three customers added in test case 1 ... 38

Figure 5.5 After four customers added in test case 1 ... 39

Figure 5.6 Positions of facilities and customers for test case 2 41

Figure 5.7 Positions of facilities and customers for test case 2 43

Page | vii

List of Tables

Table 4.1 Comparison of various algorithms of voronoi construction 30

Table 5.1 Aggregate distance for test case 1.. 40

Table 5.2 Maximum difference for test case 1 .. 40

Table 5.3 Aggregate distance for test case 2.. 41

Table 5.4 Maximum difference for test case 2 .. 42

Table 5.5 Aggregate distance for test case 3.. 43

Table 5.6 Maximum difference for test case 3 .. 44

 List of Algorithms

Algorithm 2.1 Divide and conquer algorithm .. 11

Algorithm 2.2 Incremental algorithm .. 13

Algorithm 4.1 Voronoi diagram algorithm .. 28

Algorithm 4.2 Handle site event algorithm.. 29

Algorithm 4.3 Handle circle event algorithm .. 30

Algorithm 4.4 nearest facility location algorithm .. 31

Page | 1

Chapter 1

Introduction

1.1 Motivation

In everyday life people come across many times with situations like finding a place

which is near to everyone who wants to gather for particular reason. For example,

there are four friends who live in different part of a city. They decided to watch a

movie running in all theatres in the city. So they all now plan to meet at a theatre. But

the question is which one? Which of the theatre they should select so that it is almost

at equal distance from every friend? Two situations arise when finding the solution of

this condition. In first case they may come with a solution as a theatre which is nearer

to three of them but farther from fourth friend i.e. nearer to many but farther for

remaining. No doubt in this way they can minimize the total distance covered by all

the friends but at the cost of few friends covering major distance, which is not fair. In

that condition the friend farther from selected theatre may decide not to come. But

they don’t want that their friends take a decision like this. So they want to find the

theatre which is at a reasonable distance from every friend’s location. In the second

case they want to select a theatre so that the difference between distances travelled by

any two friends is minimum. But in this case they may select a theatre far from

everyone that is at a distance roughly equal for every friend; hence the difference

between distances travelled by any two friends is minimized. So this is also not the

solution we are looking for.

Hence a solution is required which gives a facility (theatre in above example) which is

near to every query point (friends in above example). This thesis work deals with the

problem as stated above to find a point (object) in space which is approximately at

equal distance from multiple query points. It is discussed how we can apply different

approaches to solve this problem and the one which is applied in this work. Here the

problem of nearest point of interest to a group of query points is tackled with the use

of voronoi diagrams.

The Voronoi diagram is a versatile geometric structure. We have described an

application to social geography, but the Voronoi diagram has applications in physics,

Page | 2

astronomy, robotics, and many more fields. It is also closely linked to another

important geometric structure, the so-called Delaunay triangulation.

1.2 A brief review of Voronoi Diagram

The name voronoi was coined after the name of a Russian mathematician Georgy

Feodosevich Voronoy. He did initial work on voronoi structure. In fact it also been

called by other names like Dirichlet tessellations, Wigner-Seitz zones, Thiessen

polygons and Domains of actions, most of which are the names of early researchers

on this construct in different fields of science.

The Voronoi diagram of n sites in a plane and its dual, the Delaunay triangulation, are

considered to be the most important constructions or technique in the area of

computational geometry as well as in some other fields of vision and biology,

archeology, computer-aided design, chemistry, geography, pattern recognition,

physics, etc. Because of practical and theoretical usefulness of Voronoi diagrams (and

Delaunay triangulation), their characteristic features, properties as well as algorithms

to construct these diagrams are extensively studied and covered in standard text books

of the field, and in numerous papers.

1.2.1 Definition and basic properties

Euclidean distance between two points p and q, dist(p,q), is given by

 dist(p,q) = 22)()(qpqp
yyxx

Let P = {p1, p2….pn} represents a set of n distinct points in any plane then these

points can be considered as sites for voronoi diagram. The voronoi diagram of set

P{p1,p2….pn} can be defined as the division of plane into n cells or region, , one for

each site in P set, with the property that a point q lies in the cell corresponding to a

site pi if and only if the dist(q,pi) < dist(q, pj) for each pj ∈ P with j i. In other

words, the voronoi diagram is the division of space in such a way so that any point

that lies in the region of a site has this site as the nearest site as compared to others

[1]. Sometimes the meaning of voronoi diagram is taken as the subdivision of space

showing only vertices and edges. V(pi) is used to represent the cell of site pi, said as

voronoi cell of pi. To understand the structure of complete voronoi diagram it is

required to study the structure of single voronoi cell first.

 The bisector between two points p and q is defined as the perpendicular

bisector of pq. The bisector between two points divides the planes into two

Page | 3

equal halves. The half-plane that contains the p in it is represented by h(p,q)

and the half plane that contains the point q in it is represented by h(q,p). A

point r lies in the half plane of p iff dist(r,p) < dist(r,q).

 A voronoi cell is created as a result of area bounded by the perpendicular

bisectors between a site and every other site in the plane. But as an

observation it can be showed that not every bisector define the edges of a

voronoi cell. In other word a voronoi cell is created by the intersection of the

half planes which contains the site in it. This thing can be stated in formal way

as

 V(ip) = ijnj ji pph
 ,1 ,)(

 According to above property, in extreme case the voronoi cell is made up of

n-1 half plane intersection. Thus V(pi) is a region constructed as the

intersection of n-1 half planes. Hence it is convex in shape that is bounded by

at most (n-1) vertices and at most (n-1) edges.

Figure 1.1 A single cell of voronoi diagram

 Every edge in voronoi diagram is a straight line. It may be a line segment or

half line (bounded from one side and free from other). Sometimes infinite

lines also represent an edge of a voronoi diagram but that is a special case

where all the sites are collinear and other edges are also infinite lines.

 It can be put in the form of formal statement as property of voronoi diagram:

Let P{p1,p2….pn} be a set of points in the plane representing as sites. The

voronoi diagram will have all the edges as infinite parallel edges if all the sites

Page | 4

are collinear otherwise the voronoi diagram will have one (in case when there

are only three sites) or more than one intersection point (vertices) and the

edges will be either line segments or half infinite line. In this case the voronoi

diagram will be a connected diagram.

Figure 1.2 A typical vornoi diagram

 In a voronoi diagram, for sites(n) 3 the number of vertices is at most 2n-5

and the number of edges is at most 3n-6.

 Edges are the part of perpendicular bisectors between two sites. The numbers

of bisectors are quadratic in nature but the complexity of voronoi diagram is

linear. Hence not all the bisectors define the edges of the voronoi diagram and

hence not all the intersection of these bisectors defines the vertices of voronoi

diagram.

 To characterize which perpendicular bisectors contribute in defining the edges

and vertices of a voronoi diagram the concept of largest empty circle is used.

 For any point q in voronoi diagram, if a circle of maximum size is drawn by

taking q as its centre so that the circle does not contain any site inside it, is

called as the largest empty circle of point q in P (set of sites), denoted as

CP(q).

Page | 5

Figure 1.3 A largest empty circle of point q with respect to P

 A point q is a vertex of voronoi diagram Vor(P) if and only if the largest

empty circle of q with respect to P, CP(q) contains three or more than three

sites on its circumference.

 The perpendicular bisector between two sites define an edge if and only if

there is a point on the bisector such that the largest empty circle of q with

respect to P, CP(q) contains only these two sites on its circumference and no

other site.

Figure 1.4 Largest empty circle defining the edge and vertex

1.2.2 Importance of voronoi diagram

Voronoi diagram is a very important construct because of the following points:

 Voronoi diagram is found in nature in various situations and various forms.

Various types of voronoi diagrams can be used to define the pattern found in

nature.

Page | 6

 Voronoi diagrams resembles many structure found in nature and are also related to

various well known geometrical structure. Hence voronoi diagrams have

interesting geometrical and mathematical properties which can be used to solve

mystery of nature.

 Voronoi diagram can be used to solve various complex computational problems

when used as data structure. It is used as strong tool to solve many computational

problems specially related to geometric structures.

 If any geometric problem can be molded in the form of voronoi diagram, then its

many characteristics and properties can be found by simulating it in the form of

voronoi diagram.

 Hence by considering above points it could be said that voronoi diagrams are

useful in solving problems related to field of mathematics, geometry, natural

science and algorithms.

1.2.3 Variations of voronoi diagrams

Voronoi diagrams have emerged from the very basic voronoi diagram to highly

complex in nature to solve required complex problems. From the beginning of its

invention and use its now have covered diversified fields even those which seems to

be not related to computational geometry.

The major varieties of voronoi diagram are stated in following section [2].

(a) Based on order (k)

In this variation of voronoi diagram, regions of voronoi diagram are defined by a

subset Pi containing k sites from whole set of sites P [3]. Every point that is nearer to

these k sites as compared with other remaining sites lie in a region.

A point q lies in a region of Pi if and only if d(q,a) < d(q,b) for each a in the set Pi and

for each b in the set (P-Pi). When the value of k=1 the voronoi diagram becomes

simple point voronoi diagram where regions are formed on the basis of locality of a

single point.

Page | 7

Figure 1.5 Classification of voronoi diagrams on the basis of different criteria

(b) Based on dimensions (d)

Voronoi diagram can be categorized on the basis of the dimensions in which it is

defined.

For defining voronoi diagram above two dimensions the concept of facets and edges

is used. It is used to represent real world objects and other more complex concept.

Classification of

voronoi diagrams

Based on type

of site

Based on

distance

function

Based on

order (k)

Based on

dimensions

(d)

Based on

nature

Point site

Line

segment

site

circular

site

Polygonal

site

L2 metric d. f.

Lp metric d. f.

Quasi-eucledian

d. f.

Weighted

site

Dynamic

Static

Page | 8

(c) Based on shape of sites

 Point site: when the shape of sites is point.

 Line segment site: when instead of point a line segment defines the site and its

region.

 Circular site: when site is in the form of a circle. This type of voronoi diagram is

used in robot navigation in proximity detection.

 Polygonal sites: in this type of voronoi diagram connected polygon are treated as

the sites.

 Weighted site: in this type of voronoi diagram each site may have different

weight assigned to them based on the contribution of the sites in the set.

(d) Based on distance function

 Quasi-eucledian distance function: here distance is measured in terms of quasi-

eucledian distance.

 Lp metric distance function: here Lp metric is used as a distance function.

 L2 metric distance function: here L2 metric is used as a distance function.

(e) Based on nature

 Static: in this type of voronoi diagram sites are known in advance and hence

information is available before the process of computing voronoi diagram.

 Dynamic: in this type of voronoi diagram, either sites are in constant motion or

the sites are added or deleted dynamically.

1.2.4 Some applications of Voronoi Diagram:

 In the field of geometry, voronoi diagrams can be used to find the

appropriate location to open new branch of any business as far from

others as possible by using the largest empty circle property of voronoi diagram.

 Voronoi diagrams coupled with the farthest point voronoi diagram are used for

finding efficient algorithms to compute roundness of a set of points.

 In the field of networking voronoi diagrams can be used to calculate the capacity

of a wireless network and construction of Wi-Fi radio map [4].

Page | 9

 In the field of epidemiology, Voronoi diagrams can be used to correlate many

sources of infections in epidemics. Such use of voronoi diagram is mentioned in

the history by John to study the 1854 Broad Street cholera outbreak in Soho,

England. He correlated areas on the map of London using a particular water pump

and the areas where most deaths due to the outbreak occurred.

 Voronoi diagrams, known as Thiessen polygons in the field of climatology are

used to calculate the overall rainfall based on the series of point measurements.

 Finding nearest neighbor problems are related to many other problems and

application, such as finding the nearest hospital or chemist or nearest police

station. To answer nearest neighbor queries, voronoi diagram can be used as a

point location data structure.

 In the field of ecology the voronoi diagrams are used to study the growth pattern

of forest. It can prove useful to prevent fire by building some preventive measures

to predict the fire.

 The voronoi diagram can be used to assess the circularity or roundness of the

dataset with the help of coordinate measuring machine.

 In the field of polymer physics, voronoi diagram are used to represent fee

volumes of polymers so that a quality polymer can be made.

 In the field of computational chemistry, Voronoi cells defining the positions of

the nuclei in a molecule are used to compute atomic charges. Voronoi

deformation density method is applied here.

 In the field of mining, voronoi diagrams are used to find the reserves of very

useful minerals and other materials. In this technique exploratory drill holes

represents the set of sites in the voronoi diagram.

 In the field of materials science, polycrystalline microstructures in metallic alloys

are commonly represented using Voronoi tessellations.

 In computer graphics, Voronoi diagrams are used to generate some specific set of

texture like organic or natural substance.

 In the field of robotics, to find the path of a robot navigating through many

obstacles [5].

http://en.wikipedia.org/wiki/Epidemiology
http://en.wikipedia.org/wiki/1854_Broad_Street_cholera_outbreak
http://en.wikipedia.org/wiki/Computational_chemistry
http://en.wikipedia.org/wiki/Partial_charge
http://en.wikipedia.org/wiki/Voronoi_deformation_density
http://en.wikipedia.org/wiki/Voronoi_deformation_density
http://en.wikipedia.org/wiki/Materials_science

Page | 10

Chapter 2

Literature Review

2.1 Various voronoi diagram construction algorithms

The existence of different types and uses of Voronoi diagrams requires their computer

construction to vary accordingly. This section reviews methods for the computer

construction and representation of planar Voronoi diagrams which have been

designed and/or implemented before.

2.1.1 Divide and Conquer Construction

A most common approach that is used to solve many problems, divide and conquer is

also applied to construct voronoi diagram. In this methodology the given n sites are

divided into two sets by a vertical line and then this approach is applied on recursively

until single sites are left. Then after computing diagram for small number of sites

merging steps occur resulting in a final diagram of voronoi. It is calculated that a

merging process takes O(n) time. Hence full voronoi diagram can be computed in

O(n log n). This way voronoi diagram can be computed in efficient way.

Let P be a set of n points in the plane. The points are vertically partitioned into two

subsets R (red) and B (blue). Consider the Voronoi diagram of the sets R and B. Then

the Voronoi diagram of P substantially coincides with the Voronoi diagrams of R and

B. In fact, there exists a monotone chain of edges of Vor(P) such that Vor(P)

coincides with Vor(R) to the left of the chain, and it coincides with Vor(B) to its right.

 Let b(R, B) be the set of all edges and vertices of Vor(P) belonging to the common

boundary of the regions of some pi ∈ R and pj ∈ B. The bisector b(R, B) contains two

half-lines, belonging to the bisectors bij of the two “bridges” connecting the convex

hulls of R and B. The bisector b(R, B) is a y-monotone chain leaving the regions of

the points pi ∈ R to its left and those of pj ∈ B to its right. Let R and B respectively be

the regions of the plane located to the left and to the right of b(R, B).

Page | 11

Figure 2.1 Divide and conquer approach

The bisector b(R,B) is a y-monotone chain leaving the regions of the points pi ∈ R to

its left and those of pj ∈ B to its right. Let R and B respectively be the regions of the

plane located to the left and to the right of b(R, B). Then Vor(P) consists of

Vor(R) ∩ πR, Vor(B) ∩ πB and b(R, B). Let e be an edge of Vor(P). If e separates

two points of R in Vor(P), then it is (a portion of) the edge separating them in Vor(R).

Due to Observation 2, e cannot belong to πB. If e separates two points of B, the case

is analogous. If e separates one point of R from one of B, then e ∈ b(R, B).

Algorithm 2.1 Divide And Conquer Algorithm

1. Sort the points of P by abscissa (only once) and vertically partition P into two

subsets R and B, of approximately the same size.

2. Recursively compute Vor(R) and Vor(B).

3. Compute the separating chain.

4. Prune the portion of V or(R) lying to the right of the chain and the portion of V or

(B) lying to its left.

Page | 12

2.1.2 Construction by Transformation

By transforming geometrical problems into easily understandable and solved

problems is very helpful in solving the geometrical problems. Following in this way

many attempts have been made to transform other well-known geometrical algorithms

into the voronoi construction algorithm [2]. These include one dimensional reduction,

Delaunay triangulation and other higher order dimensional embedding. The

transformation process takes O(n) time in most of the cases and hence construction

efficiency depend on the construct from which it is derived.

2.1.3 Construction through Delaunay Triangulation

The planar voronoi diagram and Delaunay triangulation are dual of each other.

Delaunay triangles correspond to voronoi vertices and Delaunay sites correspond to

voronoi regions. Hence a voronoi diagram can be made from Delaunay triangulation

in O(n) time [6].

The graph G has a node for every Voronoi cell—equivalently, for every site—and it has

an arc between two nodes if the corresponding cells share an edge. Note that this

means that G has an arc for every edge of Vor(P). In given figure, there is a one-to-

one correspondence between the bounded faces of G and the vertices of Vor(P).

(a) Voronoi diagram (b) dual of voronoi diagram i.e.

 Delaunay triangulation

Figure 2.2 Voronoi and its dual Delaunay triangulation

Page | 13

2.1.4 Higher Dimensional Embedding

In geometrical sense, the convex hull is the dual of the voronoi diagram of given sites.

The voronoi diagram in R2 can be converted into convex hull in R3 and vice versa of

that in O(n) time. Easy generalization to higher dimension is the main feature of

embedding method. For determining convex hull of higher dimensions, many

algorithms are known. Therefore an efficient method for computing worst case

computation of d-dimensional voronoi diagram exists.

2.1.5 Incremental Construction

One of the method famous for its simplicity is the incremental method of constructing

voronoi diagram in the plane in an incremental way in which the construction begin

by initially few points and then remaining points are added one by one. When new

site is entered the whole new voronoi diagram for all the sites including the site

entered recently is constructed and displayed. The whole process of construction in

this way can be divided into two major parts. In first part, the region of new site

entered in old diagram is found. In second part, the boundary of new region of entered

site is calculated edge by edge. This is done by calculating the edge between the

newly entered site and the old sites that will share a common boundary with newly

entered site [7].

This algorithm is much simple though its time complexity is O(n2) hence it cannot be

used where speed matters. That resulted in further search for improving it. One such

improvement made by researchers was that they tried to speed up the insertion up

using the randomization [8]. As with other geometrical algorithms, numerical error

comes up in the process of construction using incremental approach which is the

major drawback of this algorithm. Some proposals were made to make the strategy of

insertion robust against numerical error [9].

Algorithm 2.2 Incremental Algorithm

1. Starting with the Voronoi diagram of {p1….pi} add point pi+1

2. Explore all candidate to find the step pj (1 ≤ j ≤ i) closest to pi+1

3. Compute its region

4. Build its boundary starting from bisector bi+1

5. Prune the initial diagram.

Page | 14

6. While building the Voronoi region of pi+1, UPDATE DCEL(Doubly Connected

Edge List).

Figure 2.3 Incremental algorithm in progress

UPDATE DCEL

Each time an edge e, generated by pi+1 and pj, intersects a preexistent edge, e΄, a new

vertex V is created and a new edge starts, e + 1. Then, these are the tasks to perform:

1. Assign VE(e) = V, eN(e) = e΄, fL(e) = i + 1, fR(e) = j

2. Create e+1 and assign VB(e+1) = V, eP (e + 1) = e

3. Delete all edges of the region of pj, that lie between VB(e) and VE(e) in clockwise

order

4. Update e(pj) = e

5. Create v with e(v) = e

Running time: Each step runs in O(i) time, therefore the total running time of the

algorithm is O(n2).

Page | 15

2.1.6 Dynamic Construction

As with many data structure, voronoi diagram can be made dynamic so that it can

maintain set of sites which are added and deleted randomly. It is easy to handle the

case of addition but for deletion suitable data structure is required to support deletion

process. Attempts have been made to handle insertions and deletions of sites in O(n)

time with the help of voronoi tree that occupies O(n log n) space [10].

2.1.7 Parallel Construction

Parallelizing the algorithms in the field of computational geometry are not an easy

task because of the sequential nature of many techniques used for it. Because the

voronoi diagrams are of great importance, efforts have been made [11] to make it

work in a parallel environment. Parallel algorithm for construction of voronoi diagram

has been suggested by some researchers [12].

2.1.8 Plane-Sweep Construction

Another useful algorithm in the field of computational geometry to construct voronoi

diagram is the plane sweep algorithm [13]. This works by decreasing the dimension of

the problem as opposed to embedding method. The static problem of construction of

voronoi diagram is converted to a dynamic problem of storing the cross section of

voronoi diagram with straight line. This algorithm maintains a sweep line that goes

from one side of the diagram to other sweeping through the sites of voronoi diagram.

At any stage the swept portion of the diagram is complete and the remaining not

swept area is incomplete and yet to be discovered by the sweep line.

Fortune [14] initially observed that updating the sweep line can be used with cost of

O(log n) time when certain continuous deformation of the diagram is treated, and

from this deformed diagram original diagram can be made in the time of order O(n).

The plane sweep method of constructing voronoi diagram is simple as well as

efficient. It takes time of order O(n log n) and space of order O(n) and hence it is one

of best algorithms known to construct voronoi diagram.

A simple method to construct voronoi diagram is: for each site pi, calculate the

common intersection of the half-planes h(pi,pj) with j i, using the naïve algorithm.

In this manner time of order O(n log n) is spent on every voronoi cell summing upto

O(n2 logn) time spent on construction of full voronoi diagram. Voronoi diagram has

the complexity of the linear order. The plane sweep algorithm used in this thesis

Page | 16

work, also known as the Fortune’s algorithm takes O(n log n) time to construct the

voronoi diagram. The problem of sorting n numbers is reducible to the problem of

computing the voronoi diagram in the plane. Hence any algorithm must take Ω(n log

n) time to compute the voronoi diagram in the worst case. Therefore the Fortune’s

algorithm is optimal.

2.2 Literature review of facility location problem

The competitive facility location problems has been investigated in many papers and

been a subject of interest for many researchers. In most of the papers competitive

location model for two competitors are given. Three companies that are in mutual

competition to each other and intend to locate their facility on linear market [15]. It is

known that Nash equilibrium solution does not exist for location problem of three or

more competitive facilities.

The demands are continuously distributed on the market and facilities are located in

some specific order of sequence A, B and C. Stackelberg equilibrium solution for

three competitive facilities are considered. It considered the decision problems of

three stages. In the first stage problem it consider the facility location for A so that it

is optimal with respect to B and C. In the second stage problems it finds the optimal

location of facility B with respect to facility C by using the information related to

facility A. In final stage problem it finds the optimal location of the facility C by

utilizing the information stored in the facilities A and B. This model has been

represented as three stage decision problems.

Mobile facility location problem assigns each facility and client a start location in a

metric graph. A destination node for each client and facility is to be found such that

every client is sent to a node, same as that of destination of some facility. The total

distance clients and facilities travels or by the maximum distance traveled by any

client or facility determines the quality of a solution. The total movement of facilities

and clients is minimized in [16] which generalize the classical k-median problem.

[Demaine et al. in SODA 2007] introduced class of movement problems where it was

observed a simple 2-approximation for the minimum maximum movement mobile

facility location while an approximation for the minimum total movement variant and

hardness results for both were left as open problems.

Page | 17

An 8- approximation algorithm for the minimum total movement mobile facility

location problem main result here was main result. This problem generalizes the

classical k-median problem preserving reduction. There cannot be better than a 2-

approximation for the minimum maximum movement mobile facility location

problem, unless P = NP; so the simple algorithm observed is essentially best possible.

Many location researchers have challenged the difficulties in multi-factor analysis of

location decisions. The development of a novel geographic information system, based

decision support system (GISDSS), is proposed by C. Jungthirapanich, and T.

Pratheepthaweephon [17] for supporting high quality decision making in the facility

location domain. A chromatic representation location model and vastly accepted

location factors is incorporated by GISDSS. To manipulate data, and identify suitable

sites, a geographic information system (GIS) is used with the location model. Input

data is analyzed by the model and provides the best locations through the hue,

saturation, and value (I-ISV) color model.

A unique color with its own chromatic representation is assigned to each location

factor. The color saturation is varied, ranging from 0 as the most important to 1 as

unimportant, to express the levels of importance of location factor. Variance in

vertical value (V) depicts the scores for location alternatives, with 0 as the highest

scores and 1 as the lowest. Thus with the combination of H, S, and V composite color

can be visualized. The color displayed can also be stated quantitatively using the color

equation. Thus recommended location can be effectively specified in both numerical

and graphical formats.

To determine the location of the facility and the allocation of the demands of

customers is the essence of all the facility location problems (under the condition of

the minimum cost). An all-purpose bi-level simulated annealing algorithm (BSA) has

been presented by Ren Peng [18] for the facility location problem, which is based on

character and the idea of the standard simulated annealing algorithm. To solve the

problem, the BSA is divided into two layers as inner layer and outer layer. For the

decision of the facility location, outer algorithm is optimized and inner algorithm is

optimized for the allocation of customer’s demand under the given decision of the

outer algorithm.

Page | 18

The hierarchical facility costs are a special case of the setting in which the facility

cost is a more complex function of the set of clients, assigned to a single facility, and

the algorithm, for the problem independent of the number of levels in the hierarchy

tree and for the case of identical costs on all facilities, does not simply depend on their

number. The bound is improved to 4.236 using scaling and accepting only sufficiently

large improvements, it can be turned into a polynomial time (4.236+ ε)-approximation

algorithm for the hierarchical facility location problem [19]. A facility cost, that is an

arbitrary sub-modular function cost(S) of the set of clients S assigned to the facility,

defines a more general class of such problems.

With multiple transport alternatives, Yosuke Takano and others, [20] presented a

modeling and optimization of facility location and distribution planning problems.

The problem is to determine an optimal facility location with respect to management

strategy, by using huge physical distribute on data. Two types of problems are

considered. The first one is a facility location problem with transportation from depot

to customer and a direct transportation from factory to customer simultaneously.

Large size problem is solved efficiently by applying lagrangian relaxation. The

second one is the competitive facility location problem with multiple competing

companies. With this distribution profit’s effectiveness is shown by collaborative

decision making.

For the facility location optimization problems, which has earned extensive research

interests, Maximal covering location problem (MCLP) is one of the well-known

model. However the application of the traditional formulation of MCLP is limited by

various practical requirements and effective approaches for large scale problems is

made extremely difficult by the NP-hard characteristic. Li Xia and others [21] focused

on a facility location problem motivated by a practical project of bank branching. The

traditional MCLP formulation has been generalized as a mixed integer programming

(MIP) with considerations of various costs and revenues, multi-type of facilities and

flexible coverage functions. For large scale problems, a CPLEX ·based hybrid nested

partition algorithm has been developed and to deal with extremely large problems,

heuristic-based extensions have been introduced. The formulation and algorithm are

embedded into an asset called IFAO-SIMO. The effectiveness and efficiency of the

approach is demonstrated by the numerical results.

Page | 19

Shuming Wang and others [22] have dealt with problems, under a hybrid uncertain

environment, involving randomness and fuzziness. A two-stage fuzzy random facility

location model, with recourse, is developed in which the demand and the cost are

assumed to be fuzzy random variables. As in general, the fuzzy random parameters in

the model can be regarded as continuous fuzzy random variables with infinite

realizations, the computation of the recourse requires solving a large number of

second-stage programming problems. Due to this fact, the recourse function cannot be

calculated analytically, which implies that the model cannot benefit from the use of

methods of classical mathematical programming. A technique of fuzzy random

simulation is developed in order to solve the location problems of this nature. In the

sequel, by combining the fuzzy random simulation, i.e. simplex algorithm and binary

particle swarm optimization (BPSO), a hybrid algorithm is proposed for solving the

two-stage fuzzy random facility location model.

Based on Plant Growth Simulation Algorithm (PGSA), Li tong with others [23]

proposed a bionics algorithm to solve facility location problems. On comparing the

calculating results of PGSA with Genetic Algorithm (GA) for distribution center

location problem, it is found that PGSA is better than GA in term of accuracy. By

selecting 50 customers randomly, it also solve Weber location problem with different

facility numbers. With respect to other heuristic algorithms, PGSA can find global

optimal solutions. Meanwhile, according to the different facility numbers, it combines

global and local optimal solutions and set up optimal facility location arrangement as

a whole. The algorithm discussed here shows its accuracy, astringency and

generalization. Solving location problems is an actual application of PGSA.

Timeliness is one of the most important objectives as it reflects the quality of

emergency rescue. To increase the number of service facility available is the most

obvious way for providing timeliness. Unfortunately, due to capital constraints,

increasing the number of facility is generally impossible. In such a case, the strategy

for emergency facility location becomes an important issue. YU Dejian with others

[24] discussed the facility location strategy in emergency management, combining

subjective judgment and objective analysis, and proposed an emergency system

location model which is based on weighted grey target strategy theory. Finally, an

application example verified that the method is effective one for solving the

emergency facility location issue.

Page | 20

The Multiple Facility Location Problem (MFLP) is to locate certain facilities so as to

serve optimally a given set of customers, whose requirements and locations are

known. When facility locations have to be selected from a given set of locations, the

corresponding location problem becomes a Discrete Multiple Facility Location

Problem (DMFLP). In this study Davood Shishebori with others [25] considered a

special case of DMFLP where multiple facilities that are of different type are placed

(location decision) and assigned customers to these facilities (allocation or

assignment). The case will be discussed based on interactions (with and without)

among new facilities. Then proposed are new heuristic solution methods and branch-

and-bound algorithms. Computational results on randomly generated data, in

comparison with optimal solutions, indicates that the new methods are, both, accurate

and efficient.

Bin Yi+ and Rongheng Li [26] considered one kind of uncapacitated facility location

problem which is termed as k-product uncapacitated facility location problem with

no-fixed costs (k-PUFLPN). The problem can be defined as follows: There is a set of

demand points, where clients are located and a set of potential sites, where facilities of

unlimited capacities can be set up. K different kinds of products are there. Each client

needs to be supplied with k different kinds of products by a set of k different facilities

and each facility can be set up to supply only a distinct product, with no fixed cost. A

non-negative cost of shipping goods is there in between each pair of locations. These

costs are assumed to be symmetric and also satisfy the triangle inequality. A set of

facilities, which are to be opened, and their designated products is to be selected and

has to find an assignment for each client within a set of k facilities to minimize the

sum of the shipping costs. In this paper, an approximation algorithm was proposed

with a performance guarantee of (3/2) k -1 for the k-PUFLPN.

The continuous growth of wireless sensor networks demands new methods and

approaches to efficiently manage and service them. Elioz Velazquez and others [27]

presents an approximate solution to the facility location problem for sensor network

maintenance, which is based on static sensors and mobile facilities. To increase the

network lifetime by recharging or redeploying sensors with the help of mobile multi-

purpose maintenance facilities is the main objective. Problem is variant of the facility

location problem (FLP). In this case, a suitable deployment of the facilities is to be

done in which their workload is balanced and the movement of the facilities, in their

Page | 21

area, is minimized. It should be accomplished keeping the number of sensor

communications at minimum. While finding the optimal placement of the

maintenance facilities is a NP-hard problem, this work [27] showed a simple and

efficient solution, totally distributed and localized, which starts with a balanced

deployment, progresses towards final partition of remarkable quality. Such a final

partition satisfies the load balancing requirement and minimizes the facility travel

time. The experimental analysis of such solution shows that sensor message cost

remains low as the size of the network increases. The experiments also show a load

distribution which is similar and sometimes better than centralized deployment

solutions.

Environmental regulations are forcing companies to comply with environmental

policies so as to control carbon emission. It is required for companies to green their

supply chains. One way to do this is extending the supply chain to collection and

recovery of products in closed loop configuration. Profitable reverse logistics to

restore the recovered product can be used so as to resell it in primary or secondary

market. Ali Diabat and others [28] have introduced a multi-echelon multi-commodity

facility location problem with a trading price of carbon emissions and a cost of

procurement. If carbon cap is higher than the total emission then company gains but if

carbon cap is less than the total emission then company might incur cost.

Page | 22

Chapter 3

Problem Statement

3.1 Gap analysis and related work

Facility location problem or location analysis or problem of k-center is a branch of

computational geometry and operations research that deals with location of facilities

so as to optimize specific requirement in the problem. It convert real life problem into

mathematical problem and then modeling it to find the solution of the problem using

many facility location algorithms. The target of problem solving can be minimizing

transportation costs, placing harmful substance or radio-active substances at farthest

location or locate facility in a competitive environment. Initially used for locating

facilities, this field now has been expanded covering many advance fields like data

clustering, classification, databases, unsupervised learning, data mining, spatial range

query and spatial query integrity [29].

In its basic form, the facility location problem contains a set of facilities F from which

a subset of facilities, Fi, are to be placed so as to satisfy demands of set of demand

points C. The goal here is to locate the facilities in such a way so as to minimize the

distance from each facility to demand points. Sum of costs of opening the facilities

should be minimized.

The Facility Location problem when considered on general graphs is an NP-hard

problem to be solved optimally, by reduction from the Set Cover problem or any other

problem of this type. Many approximation algorithms have been proposed for solving

the facility location (FP) problem and other variants of it because of the usefulness of

the facility location problem in real life and many other fields.

3.1.1 Nearest neighbor search

In problem of nearest neighbor searching, a data points set of n points is given in a

metric space, Q, The goal is to preprocess these given data points so that, given any

query point q ∈ Q, a data point nearest to q can be found quickly. This is also known

as the post office problem or the closest point problem in computational geometry.

Page | 23

3.1.2 Minisum facility location

It is a simple facility location problem also known as Fermat-Weber problem. In this

problem it is required to find a single point from which the sum of a given set of

query points is minimum. In other words it can be stated as in Fermat-Weber problem

a single point in space is located within a set of points with an optimization criteria of

minimizing the sum of the distances of the points from other points. Some variations

of above stated problem exists in which it is desired to place multiple facilities or

there are more complex optimization requirements or constraints on the locations of

facilities are there.

3.1.3 Minimax facility location

As it is obvious from the name of the problem, in this category of problems it is

required to find or locate a point in the space so as to minimize the maximum distance

between this point and sites where distance means the minimum distance between

point and any one of the sites given.

3.1.4 Maxmin facility location

The maxmin facility location problem is the reverse of the minimax facility location

problem. In this problem it is required to find or locate a point which maximizes the

minimum distance of the point from the sites where distance means the maximum

distance from point to any one of the sites given.

3.2 Problem statement

Given m facilities and n customers in a city, find the facility which is located at such a

place so that the sum of distances from a set of customers is minimum. Also the

maximum difference in distance for any two customers should be minimized to best

possible solution preserving former criteria.

3.3 Problem formulation

Let F{f1,f2……fm} is a set of facilities located at different places and C{c1,c2…..cn} is

a set of n customer residing at different location.

Ci ⊆ C, for i=1, 2………2n

dist(x,y)= distance between x and y

(i)Maximum difference, MD (fj, Ci) = MAX[dist(fj,cp)] - MIN[dist(fj,cp)] ∀cp ∈Ci

(ii)Aggregate Distance, AD (fj, Ci) = ∑dist(fj,ck) ,∀ ck ∈ Ci

Page | 24

To find a facility fi that minimizes the maximum difference and aggregate distance i.e.

which minimizes the functions (i) and (ii) both.

The problem of facility location is old enough and is solved by many researchers in

many ways. Some of the major problem types of facility location problem are nearest

neighbor search, Minisum facility location, Minimax facility location and Maxmin

facility location.

 Nearest neighbor search mainly deals with single query point searching for nearest

facility.

 Minisum or Fermet-Weber problem deals with only minimizing the aggregate sum

of disatances of all the customer from the facility.

 Minimax focusses only on minimizing maximum distance of any customer from

the facility.

 Maxmin focused only on maximizing minimum distance of any customer from the

facility.

In real life many times there are situations where an optimal solution is required

which is the combination of solutions to each of the above problems. These problems

deal with only one or two criteria. Hence a method is required which gives the

optimal solution which has all of the above conditions satisfied. The algorithm

proposed in this thesis tries to find out the approximately optimal solution in less time.

Page | 25

Chapter 4

Implementation

4.1 Preliminary of Fortune’s algorithm

4.1.1 Background of Fortune’s algorithm

In plane sweep line algorithm, a horizontal line goes from one side to opposite side

sweeping through all the sites of voronoi diagram. During this process, the

information of structure computed is maintained in data structures. When sweep line

sweeps through the input voronoi sites, the information regarding the intersection of

this line with the input voronoi sites area. During sweep, most of the time information

stored remains same except during some special events known as site events.

Figure 4.1 Beach line and sweep line

This technique of plane sweep algorithm can be applied to construction of voronoi

diagram of a given set of site points, P = {p1, p2….. pn} in a given plane. In this method

a sweep line keeps sweeping through the sites in the given set of sites from top to

bottom (or bottom to top). The important thing here is that it is required to store the

information of intersection of sweep line with the area of given sites as the sweep line

moves downward. But this is not an easy task because the structure above the sweep

line does not depend on the sites above sweep line only but also on the sites below the

sweep line. In other words, when sweep line meets a topmost vertex of any voronoi

cell, it still doesn’t have the information about the site of that cell. So it doesn’t have

all the necessary information required to compute the voronoi vertices of the cells

Page | 26

whose vertex is about to come and site is below the sweep line. Hence plane sweep

method is needed to be applied in a slightly different manner.

Instead of keeping the information of intersection of the sweep line with the sites area,

information of the structure above sweep line that does not change further on moving

of sweep line is stored i.e. part of the voronoi diagram above sweep line that is not

affected by the sites below the sweep line is stored because it is static will not change

till the end of computation of voronoi diagram of given sites.

Figure 4.2 Beach line is x-monotone

If area above sweep line is denoted by + it is required to find out which part of

voronoi diagram in area + will not change further i.e. the points in area + for

which it is known about their nearest site. As it is obvious that the distance of any

point q in + from any site below the sweep line will be more than the distance of

q from sweep line itself. Hence all points q whose distance to its nearest site in area

 + is less than or equal to its distance from sweep line , will lie in the cell of that

nearest site and hence area made of all such points will not change as the sweep line

moves. The area of such points is bounded by the parabola made of that nearest site as

the focus and the moving sweep line as its directrix. Hence all such points are

bounded by their respective parabola boundaries. The continuous arc formed by the

combination of lowest part of these parabolas is called as the beach line. Because

Page | 27

beach line is formed by the lowest parts of all parabolas above the sweep line and is

continuous therefore it is x-monotone i.e. any vertical line cuts it at only one point.

It is observed that the one parabola can contribute to the beach line at more than one

place. A breakpoint is a point of intersection of two parabolas or the point where one

parabolic curve changes into other new curve. These breakpoints between the

parabolic arcs define the edge of the voronoi diagram. These breakpoints traces out

edges as the beach line moves.

Therefore beach line is maintained to construct voronoi diagram instead of storing the

intersection of the sites area with the sweep line. The beach line is not stored

explicitly as it keeps changing. It changes when any event either site event or circle

event happens. In the site event a new arc appears on the beach line and in the circle

event the arc disappear from the beach line and shrinks to a point that will define one

of the vertex of the voronoi diagram.

When sweep line reaches a new site in the unexplored site area, a degenerate parabola

whose vertex and focus is the site itself and lies on the sweep line as its directrix. In

other words, the width of the parabola at that time is nil. Hence a vertical line appears

at that moment that connects the new site with the beach line above it vertically. As

the sweep line sweeps towards down, the new parabola continue to widen. Now the

new parabolic arc becomes the part of the old beach line. This process, when a new

site is encountered is known as a site event and it is described in the figure below.

Figure 4.3 stages of a site event

At a site event, when the newly appeared parabola starts widening, it intersects old

parabola at two points both acting as breakpoint of new beach line. These two

breakpoints stars tracing out an edge of the voronoi diagram. At first this edge is not

Page | 28

connected to the part of the voronoi diagram constructed but later on this edge meets

another edge hence creating a vertex of the voronoi diagram and becomes the part of

already constructed voronoi diagram.

Whole of the above explanation can be summed up in the following points as the

properties of Fortune’s algorithm preliminaries:

 The beach line is monotonic in nature over x axis i.e. any vertical line can

intersect it at only one point.

 Any new arc can appear on beach line through site event only

 Any arc on beach line can disappear from it through circle event only.

 Every vertex is detected by a circle event

4.1.2 Data structures for Fortune’s algorithm

(a) Doubly connected edge list (D): it is required to store the subdivisions of voronoi

diagram computed so far.

(b) Balance binary search tree (T): it is required to store beach line current status.

Any leaf stores arc in the form of site forming it and internal nodes represent

breakpoint stored in the form of tuple of sites <pi,pj>.

(c) Priority queue (Q): it is required to store event queue where priority is decided

by the y coordinates of the point.

 Following is the algorithm to compute voronoi diagram using Fortune’s algorithm as

explained by Mark de Berg [1].

Algorithm 4.1 Voronoi diagram algorithm

VORONOIDIAGRAM(P)

Input. A set P := {p1, . . . , pn} of point sites in the plane.

Output. The Voronoi diagram Vor(P) given inside a bounding box in a doubly

connected edge list D.

1. Initialize the event queue Q with all site events, initialize an empty status structure

T and an empty doubly-connected edge list D.

2. while Q is not empty

Page | 29

3. do Remove the event with largest y-coordinate from Q.

4. if the event is a site event, occurring at site pi

5. then HANDLESITEEVENT(pi)

6. else HANDLECIRCLEEVENT(γ), where γ is the leaf of T representing the arc that

will disappear

7. The internal nodes still present in T correspond to the half-infinite edges of the

Voronoi diagram. Compute a bounding box that contains all vertices of the Voronoi

diagram in its interior, and attach the half-infinite edges to the bounding box by

updating the doubly-connected edge list appropriately.

8. Traverse the half-edges of the doubly-connected edge list to add the cell records

and the pointers to and from them.

The procedures to handle the events are defined as follows Mark de Berg [1].

Algorithm 4.2 Handle site event algorithm

HANDLESITEEVENT(pi)

1. If T is empty, insert pi into it (so that T consists of a single leaf storing pi) and

return. Otherwise, continue with steps 2 - 5.

2. Search in T for the arc α vertically above pi. If the leaf representing α has a pointer

to a circle event in Q, then this circle event is a false alarm and it must be deleted

from Q.

3. Replace the leaf of T that represents α with a sub-tree having three leaves. The

middle leaf stores the new site pi and the other two leaves store the site pj that was

originally stored with α. Store the tuples <pj, pi > and < pi, pj> representing the

new breakpoints at the two new internal nodes. Perform rebalancing operations on

T if necessary.

4. Create new half-edge records in the Voronoi diagram structure for the edge

separating V(pi) and V(pj), which will be traced out by the two new breakpoints.

5. Check the triple of consecutive arcs where the new arc for pi is the left arc to see if

the breakpoints converge. If so, insert the circle event into Q and add pointers

between the node in T and the node in Q. Do the same for the triple where the new

arc is the right arc.

Page | 30

Algorithm 4.3 Handle circle event algorithm

HANDLECIRCLEEVENT(γ)

1. Delete the leaf γ that represents the disappearing arc α from T. Update the tuples

representing the breakpoints at the internal nodes. Perform rebalancing operations

on T if necessary. Delete all circle events involving α from Q; these can be found

using the pointers from the predecessor and the successor of γ in T. (The circle

event where α is the middle arc is currently being handled, and has already been

deleted from Q.)

2. Add the center of the circle causing the event as a vertex record to the doubly-

connected edge list D storing the Voronoi diagram under construction. Create two

half-edge records corresponding to the new breakpoint of the beach line. Set the

pointers between them appropriately. Attach the three new records to the half-

edge records that end at the vertex.

3. Check the new triple of consecutive arcs that has the former left neighbor of α as

its middle arc to see if the two breakpoints of the triple converge. If so, insert the

corresponding circle event into Q. and set pointers between the new circle event in

Q and the corresponding leaf of T. Do the same for the triple where the former

right neighbor is the middle arc.

All the three algorithms above have been taken from Computational Geometry:

algorithms and applications by Mark de Berg [1].

Table 4.1 Comparison of various algorithms of voronoi construction

Algorithm Time complexity Space complexity

Naïve algorithm O(n2log n) O(n2)

Incremental algorithm O(n2) O(n2)

Divide and conquer O(n log n) O(n2)

Fortune’s algorithm O(n log n) O(n)

Page | 31

4.2 Proposed algorithm

4.2.1 Algorithm for nearest facility location for multiple customers

The approach of finding the optimal facility is divided into two algorithms. First

finding the voronoi diagram of facilities using any voronoi diagram construction

algorithm. In this work, Fortune’s algorithm is used to calculate the voronoi diagram.

Second computing the location of optimal facility by the proposed algorithm taking

voronoi diagram of facilities Vor(F) and set of locations of customers C as input. The

second algorithm uses the result of first algorithm to give output as a facility at

optimal distances from all customers.

Algorithm 4.4 nearest facility location algorithm

NEARFACILOC(Vor(F) , C)

Input: voronoi diagram of facilities Vor(F), set of customer locations, C

Output: facility fo optimal for all customers

1. Give as input voronoi diagram, Vor(F) of facilities and locations of customers C.

2. Create voronoi diagram for customers at different location by using

VORONOIDIAGRAM(C).

3. Find all the vertices of this voronoi diagram created in step 2.

4. Find the coordinates of these vertices.

5. Calculate the mean, M, of these vertices.

6. Locate this mean in the original voronoi diagram of facilities.

7. Find in which region or cell this mean, M, lies.

8. Find the facility (site) of the above selected region or cell.

9. Output the facility, fo found in above step as facility at optimal distances from all

customers.

Page | 32

Figure 4.4 Flowchart of voronoi diagram construction using Fortune’s plane sweep

algorithm

start

Initiate event queue Q, status str

T and empty DCEL D

Remove the event with

largest y coordinates

Internal nodes in T represents half

infinite edges. Connect them to boundary

box

stop

Points in a

plane

Q is not

empty

If event=site

event at pi

HANDLESITEEVENT(pi) HANDLECIRCLEEVENT(γ)

Yes No

Traverse half edges of DCEL to add cell

records and pointer to and from them

Page | 33

Figure 4.5 Flowchart of proposed algorithm

start

Calculate voronoi diagram

for customers locations

find all vertices of above

voronoi diagram

calculate mean,M, of

above vertices

locate this mean, M, in

voronoi diagram for

facilites

 find the region in which

mean M lies

find facility of above

selected region

display output as facility

fo

stop

voronoi

diagram for

facilities

Customers

locations

Page | 34

4.2.2 Explanation of working of proposed algorithm

The proposed algorithm takes voronoi diagram as computed by using Fortune’s sweep

line algorithm as one of the input, the customers location as being the other input of

this algorithm.

First of all, by treating customers location as sites, voronoi diagram of customers

location is computed using the Fortune’s sweep line algorithm. The voronoi diagram

is calculated in optimal time of O(n log n) which is the time complexity of Fortune’s

algorithm. Now in this computed voronoi diagram of customers locations, all the

vertices are located. By using these vertices, average or mean of vertices is found.

After calculating mean of new voronoi diagram of customers, the old voronoi diagram

of facilities is required. The old voronoi diagram is stored in main memory and can be

used as and when required. Then the calculated mean of new voronoi diagram is

located in old voronoi diagram. When located, the region of old voronoi diagram in

which mean lies, is found. Then the facility as a site of this selected region is found.

This facility is the required output.

This facility will minimize the aggregate distance i.e. the sum of the distances of all

the customers from this facility. Also this facility selected will be the one which tries

to minimize the maximum difference i.e. the difference of the distance between the

maximum distance and the minimum distance, by always preserving the first

minimization criteria at priority (minimizing aggregate distance).

As the facilities are discrete objects, it is not always possible to have a site that gives

minimum for both the optimizing functions. Hence it always give the minimum

aggregate distance with best possible solution for minimum of maximum difference in

combination with first optimizing criteria.

The time complexity of the proposed algorithm is same as time complexity of

Fortune’s algorithm because it uses Fortune’s algorithm as the base algorithm. It spent

constant amount of time on computing the mean. Hence overall complexity of

proposed method is O(n log n).

Page | 35

Chapter 5

Testing and Results

5.1 Test case 1

The proposed algorithm was tested by running many test using different values. Its

step by step process is given here. First of all, the different facilities (T) were

distributed in space. In real world these facilities may represent anything like theatre

or hospital in a city. The exact locations of facilities are shown in terms of coordinates.

These locations are fixed for a scenario i.e. the facilities are distributed in space are

static in nature. They are not moving in space.

Figure 5.1 Facilities located for test case1

These facilities are distributed by clicking on the screen at appropriate locations.

When these facilities were located on the screen, the voronoi diagram of these

facilities was created simultaneously using the voronoi construction algorithm. Here

fortune’s sweep line algorithm for construction of voronoi diagram has been used.

Page | 36

 Figure 5.2 After one customer added in test case 1

When all sites or facilities are located, “add location” button is clicked to add the

locations of the customers. The facilities in real world may represent any objective

location like hospital, chemist, mall or theatre located in a big city. One such partition

will be computed for any type of facilities input. For one type of facilities input,

multiple queries can be done on that resulted voronoi diagram of the facilities located.

Different customers may live at different parts of the city.

One such customer is added in the figure shown above represented with the red dot.

When one input as a customer is given, the proposed method just calculates the mean,

m. In this case mean, m, and the customer’s location will be the same. Now it checks

for in which region this mean m lies. When found the region it shows the site of the

corresponding region as a result.

Page | 37

 Figure 5.3 After two customer added in test case 1

Location of second customer is added by clicking at proper place. When location of

this customer is added the corresponding voronoi mean, m, is calculated by the

proposed method. Then it calculates the region in which this voronoi mean, m, lies.

When found the region in which the calculated voronoi mean, m, lies, it displays the

site corresponding to that region as doubly co-centric circles. For two customers, the

mean always lies at the mid of the line joining the two of them. It is also valid form

the point of view of real world scenario, when two persons want to meet at a

particular location they choose the location which is approximately equidistant from

both. Hence it works correctly for two customers.

Page | 38

 Figure 5.4 After three customers added to test case 1

Location of third customer is added by clicking at proper place. When the location of

this customer is added, the corresponding voronoi mean, m, is again calculated by the

proposed method. Now the mean is shifted from the previous location towards the

new region that will be the one containing the desired optimal facility site. Then it

calculates the region in which this voronoi mean, m, lies. When found the region in

which the calculated voronoi mean, m, lies, it displays the site (facility) corresponding

to that region as doubly co-centric circles. In the above situation for three customers,

the mean lies at the circumcenter of the triangle formed by three customers as the

corners of the triangle. From the perspective of real world three persons would like to

meet at a location approximately equidistant from three of them. The circumcenter of

a triangle lies at equidistant from all three points of the triangle, hence the mean

satisfy what is expected from the method

Page | 39

 Figure 5.5 After four customer added to test case 1

Location of fourth customer is added by clicking at proper place. When the location

of this customer is added, the corresponding voronoi mean, m, is again calculated by

the proposed method. Now the mean is shifted from the previous location towards the

new region that will be the one containing the desired optimal facility site. Then it

calculates the region in which this voronoi mean, m, lies. When found the region in

which the calculated voronoi mean, m, lies, it displays the site (facility) corresponding

to that region as doubly co-centric circles.

 In this way any number of customers can be added to this system to find the facility

at an optimal distance from every customer. It works dynamically as any customer

can be added at any time and the resultant diagram is shown quickly.

Page | 40

5.1.1 Verification for test case 1

Table 5.1 Aggregate Distance for test case 1

Facility Distance of

Customer1

(40,30)

Distance of

Customer 2

(70,320)

Distance of

Customer 3

(420,170)

Distance of

customer 4

(470,50)

Aggregate

Distance

(AD)

T1(100,120) 108.166 202.238 323.882 376.563 1010.849

T2(210,270) 294.109 148.661 232.594 340.588 1015.952

T3(320,30) 280 382.884 172.046 151.328 986.258

T4(460,270) 483.736 393.192 107.703 220.227 1204.858

T5(580,125) 548.293 546.008 166.208 133.135 1393.644

Table 5.2 Maximum difference for test case 1

Facility Distance of

Customer1

(40,30)

Distance of

Customer 2

(70,320)

Distance of

Customer 3

(420,170)

Distance of

customer 4

(470,50)

Max

distance

Min

distance

Max

Diff

(MD)

T1

(100,120)

108.166 202.238 323.882 376.563 376.563 108.166 268.397

T2

(210,270)

294.109 148.661 232.594 340.588 340.588 148.661 191.927

T3

(320,30)

280 382.884 172.046 151.328 382.884 151.328 231.556

T4

(460,270)

483.736 393.192 107.703 220.227 483.736 107.703 376.033

T5

(580,125)

548.293 546.008 166.208 133.135 548.293 133.135 415.158

5.1.2 Result of test case 1

Facility T3(320,30) has minimum aggregate distance from all customers as shown in

table 5.1. Also it minimized the maximum difference up to second best possible result.

Hence proposed algorithm works fine here.

Page | 41

5.2 Test case 2

Figure 5.6 Positions of facilities and customers for test case 2

5.2.1 Verification for test case 2

Table 5.3 Aggregate distance for test case 2

Facility Distance of

customer 1

(156,79)

Distance of

customer 2

(322,237)

Distance of

customer 3

(504,125)

Distance of

customer 4

(644,346)

Aggregate

Distance

(AD)

T1 (85,240) 175.960 237.019 434.495 568.961 1416.435

T2 (141,318) 239.470 198.298 411.118 503.779 1352.665

T3 (225,63) 70.831 199.211 285.806 505.618 1061.466

T4 (271,191) 160.527 68.680 242.167 403.923 875.297

T5 (467,237) 348.833 145.000 117.953 207.870 819.656

T6 (490,52) 335.090 249.898 74.330 331.892 991.210

T7 (611,75) 455.018 331.308 118.106 273.002 1177.434

T8 (616,317) 517.923 304.690 222.279 40.311 1085.203

Page | 42

Table 5.4 Maximum difference for test case 2

Facility Distance

of Cust

1

(156,79)

Distance

of Cust 2

(322,237)

Distance

of Cust 3

(504,125)

Distance

of Cust 4

(644,346)

Max

distance

Min

distance

Max

Diff

(MD)

T1

(85,240)

175.960 237.019 434.495 568.961 568.961 175.960 393.001

T2

(141,318)

239.470 198.298 411.118 503.779 503.779 198.298 305.481

T3

(225,63)

70.831 199.211 285.806 505.618 505.618 70.831 434.787

T4

(271,191)

160.527 68.680 242.167 403.923 403.923 68.680 335.243

T5

(467,237)

348.833 145.000 117.953 207.870 348.833 117.953 230.88

T6

(490,52)

335.090 249.898 74.330 331.892 335.090 74.330 260.76

T7

(611,75)

455.018 331.308 118.106 273.002 455.018 118.106 336.912

T8

(616,317)

517.923 304.690 222.279 40.311 517.923 40.311 477.612

5.2.2 Result of test case 2

The facility T5(467,237) selected by the proposed algorithm works fine here also. It

gives the minimum aggregate distance from all the available options. Also it gives the

minimum of the maximum difference i.e. it minimizes the maximum possible

difference between any two customers. Hence the proposed algorithm works as

expected.

Page | 43

5.3 Test case 3

Figure 5.7 positions of facilities and customers for test case 3

5.3.1 Verification of test case 3

 Table 5.5 aggregate distances for test case 3

Facility Distance

of cust 1

(17,114)

Distance

of cust 2

(40,324)

Distance

of cust 3

(61,63)

Distance

of cust 4

(205,215)

Distance

of cust 5

(521,24)

Distance

of cust 6

(565,338)

Agg.

Dist

(AD)

T1

(48,154)

50.606 170.188 91.924 168.434 490.540 548.767 1520.4

59

T2

(78,37)

98.234 289.505 31.064 218.662 443.191 572.512 1653.1

68

T3

(109,245)

160.078 104.890 188.223 100.578 467.531 465.387 1486.6

87

T4

(190,50)

184.459 312.372 129.653 165.680 332.020 472.831 1597.0

15

Page | 44

T5

(197,340)

288.922 157.813 308.586 125.256 452.584 368.005 1701.1

66

T6

(224,175)

215.801 236.764 197.770 44.28344 333.182 377.955 1405.7

55

T7

(333,132)

316.512 350.304 280.615 152.555 216.813 310.258 1627.0

57

T8

(594,290)

603.245 555.042 579.326 396.164 275.835 56.080 2465.6

92

T9

(600,51)

586.394 623.000 539.133 427.693 83.486 289.126 2548.8

32

 Table 5.6 Maximum Difference for test case 3

Facility Dist of

cust 1

(17,114)

Dist of

cust 2

(40,324)

Dist of

cust 3

(61,63)

Dist of

cust 4

(205,215)

Dist of

cust 5

(521,24)

Dist of

cust 6

(565,338)

Max

dist

Min

dist

Max

Diff

(MD)

T1

(48,154)

50.606 170.188 91.924 168.434 490.540 548.767 548.767 50.606 498.161

T2

(78,37)

98.234 289.505 31.064 218.662 443.191 572.512 572.512 31.064 541.44

8

T3

(109,245)

160.078 104.890 188.223 100.578 467.531 465.387 467.531 100.578 366.95

3

T4

(190,50)

184.459 312.372 129.653 165.680 332.020 472.831 472.831 129.653 343.17

8

T5

(197,340)

288.922 157.813 308.586 125.256 452.584 368.005 452.584 125.256 327.32

8

T6

(224,175)

215.801 236.764 197.770 44.283 333.182 377.955 377.955 44.283 333.67

2

T7

(333,132)

316.512 350.304 280.615 152.555 216.813 310.258 350.304 152.555 197.74

9

Page | 45

T8

(594,290)

603.245 555.042 579.326 396.164 275.835 56.080 603.245 56.080 547.16

5

T9

(600,51)

586.394 623.000 539.133 427.693 83.486 289.126 623.000 83.486 539.51

4

5.3.2 Result of test case 3

Here also the selected facility T6(224,175) is the right choice as it minimizes the

aggregate distance and also it minimizes the maximum difference up to third from the

minimum which is satisfactory as it is in addition to the minimum of aggregate

distances. Hence proposed algorithm works fine in all three test cases including this

one.

Page | 46

Chapter 6

Conclusion and Future Scope

In today’s fast pacing world new technologies and internet are proving very helpful to

solve daily life problems. New internet and mobile applications have made life

comfortable. Finding a facility near to many customers is such an advantage of new

technology and internet era. The essence of all the facility location problems is to

determine the location of the facility and the allocation of the demands of customers,

under the condition of the minimum of the cost. This work presents an invaluable tool

for decision makers to reach facility approximately nearer to all. The ultimate goal is

to develop a reliable, effective, and robust system that can be used to support

customers arriving at high quality decisions on the most suitable facility locations.

The effectiveness of the proposed method has been confirmed from computational

experiments. In real location problems, due to subjective judgment, imprecise human

knowledge and perception in capturing statistic data, many parameters are of both

fuzzily imprecise and probabilistically uncertain information.

In this thesis work an algorithm to tackle nearest facility location for multiple

customers has been proposed. It tackles the problem by considering not only the

aggregate distances of all customers but also the maximum difference between the

farthest customer and nearest customer. It takes time of order O(n log n) as it is based

on voronoi diagram of order O(n log n) and its own time is of linear order.

Previously work has been done on nearest facility location using different approaches

like genetic algorithms, GPU systems, fuzzy logics or approximation. In this work

voronoi diagram approach has been used. Further combination of two or more

techniques may prove to be advantageous and can bring computation time down. Also

more accurate and precise decision can result from the combination of two or more

techniques. This kind of application may help in real life as to find any nearest facility

and the facility may be anything like hospital, chemist shop, police station or any

other emergency destinations.

Page | 47

Future scope

The proposed algorithm can be implemented using hybrid techniques which is the

combination of techniques to find the nearest facility. Also voronoi construction can

be done using an approach specific to the situation. It can work much faster when

tried to implement in distributed environment where local system find out there local

optimal and then using these local solution a global solution can be obtained.

 In this presented work, the algorithm has been used in a discrete manner i.e.

facilities are placed at discrete location. The given algorithm can be used in a

continuous environment where it desired to find the location which is placed in

continuous space.

 The proposed algorithm can be used by retail chain owner or any other

businessmen to find the location optimal for opening the new branch of their

business in a competitive environment.

 Reverse of the given problem can be approached that requires the farthest point or

facility to be found out using the same proposed algorithm in reverse manner.

 The proposed algorithm may be used in higher and complex level of problem for

e.g. in an environment where there are some type of radiation emitting sources.

Now to find the location which will have the maximum effect of radiations or the

location this will have the lowest impact of the radiations.

 This thesis work presented the nearest facility location for customer in static

environment i.e. both facilities are static and customers are also fixed at particular

locations. This method can be extended to work in dynamic environment where

either customer are moving or facilities are moving or both are in motion.

Page | 48

References

[1] de Berg, M. van Kreveld, M. Overmars, M. Schwarzkopf (2000). Computational

Geometry: Algorithms and Applications. Springer-Verlag.

[2] F. Aurenhammer. “Voronoi diagrams – a survey of a fundamental geometric data

structure”. ACM Computing Surveys, 23(3):345–405, 1991.

[3] Geng Zhao; Kefeng Xuan; Rahayu, W.; Taniar, D.; Safar, M.; Gavrilova, M.L.;

Srinivasan, B., "Voronoi-Based Continuous k Nearest Neighbor Search in Mobile

Navigation," Industrial Electronics, IEEE Transactions on , vol.58, no.6, pp.2247,

2257, June 2011.

[4] Minkyu Lee; Dongsoo Han, "Voronoi Tessellation Based Interpolation Method

for Wi-Fi Radio Map Construction," Communications Letters, IEEE , vol.16, no.3,

pp.404,407, March 2012.

[5] Vachhani, L.; Mahindrakar, A.D.; Sridharan, K., "Mobile Robot Navigation

Through a Hardware-Efficient Implementation for Control-Law-Based

Construction of Generalized Voronoi Diagram," Mechatronics, IEEE/ASME

Transactions on , vol.16, no.6, pp.1083,1095, Dec. 2011.

[6] F. P. Preparata and M. I. Shamos, Computational Geometry - An Introduction,

New York: Springer-Verlag, 1985.

[7] P. J. Green and R. Sibson, "Computing Dirichlet tesselations in the plane",

Comput. J. vol. 21, pp. 168-173, 1977.

[8] L. J. Guibas, D. E. Knuth and M. Sharir, "Randomized Incremental Construction

of Delaunay and Voronoi Diagrams", Algorithmica, vol. 7, pp. 381-413, 1992.

[9] K. Sugihara and M. Iri, "Construction of the Voronoi Diagram for One Million

Generators in Single-Precision Arithmetic", Proc. IEEE, vol. 80(9), pp. 1471-1484,

1992

[10] G. Gowda, D. G. Kirkpatrick, D. T. Lee and A. Naamad, "Dynamic Voronoi

Diagrams", IEE E Trans. Inf. Theory, vol. IT-29, pp. 724-731, 1983.

[11] Aggarwar, B. Chazelle, L. J. Guibas, C. O'Dunlaing, and C. K. Yap, "Parallel

computational geometry", Algorithmica, vol. 3, pp. 293-327, 1988.

[12] Chow, "Parallel algorithms for geometric problems." Ph.D. dissertation. Dept.

Comput. Sci., Univ. of Illinois, Urbana, ILL, 1980.

Page | 49

[13] F. P. Preparata and M. I. Shamos, Computational Geometry - An Introduction,

New York: Springer-Verlag, 1985.

[14] S. Fortune, "A sweepline algorithm for Voronoi diagrams", Proc. 2nd Annual

ACM Symp. on Computational Geometry, pp. 313-322, 1986.

[15] Shiode, S.; Kuang-Yih Yeh; Hao-Ching Hsia, "On optimal location for three

competitive facilities," Computers and Industrial Engineering (CIE), 2010 40th

International Conference on, vol., no., pp.1,5, 25-28 July 2010.

[16] Friggstad, Z.; Salavatipour, M.R., "Minimizing Movement in Mobile Facility

Location Problems," Foundations of Computer Science, 2008. FOCS '08. IEEE

49th Annual IEEE Symposium on , vol., no., pp.357,366, 25-28 Oct. 2008.

[17] Jungthirapanich, C.; Pratheepthaweephon, T., "A geographic information system-

based decision support system (GISDSS) for facility location," Engineering and

Technology Management, 1998. Pioneering New Technologies: Management

Issues and Challenges in the Third Millennium. IEMC '98 Proceedings.

International Conference on, vol., no., pp.82, 87, 11-13 Oct 1998.

[18] Ren Peng; Xu Rui-hua; Qin Jin, "Bi-level Simulated Annealing Algorithm for

Facility Location Problem," Information Management, Innovation Management

and Industrial Engineering, 2008. ICIII '08. International Conference on, vol.3,

no., pp.17, 22, 19-21 Dec. 2008.

[19] Zheng Hong-Zhen; Huang Jun-Heng; Zhan De-Chen, "Facility Location

Optimization Methods Based on Aggregate and Disperse Moves," Fuzzy Systems

and Knowledge Discovery, 2007. FSKD 2007. Fourth International Conference

on, vol.4, no., pp.669, 673, 24-27 Aug. 2007.

[20] Takano, Y.; Nishi, T.; Inuiguchi, M., "Facility location and distribution planning

with multiple transport alternatives," SICE Annual Conference (SICE), 2011

Proceedings of, vol., no., pp.967, 972, 13-18 Sept. 2011.

[21] Li Xia; Yanjia Zhao; Ming Xie; Jinyan Shao; Jin Dong, "Mixed integer

programming based nested partition algorithm for facility location optimization

problems," Service Operations and Logistics, and Informatics, 2008. IEEE/SOLI

2008. IEEE International Conference on, vol.2, no., pp.2375, 2381, 12-15 Oct.

2008.

[22] Shuming Wang; Watada, J.; Pedrycz, W., "Fuzzy random facility location

problems with recourse," Systems, Man and Cybernetics, 2009. SMC 2009. IEEE

International Conference on, vol., no., pp.1846, 1851, 11-14 Oct. 2009.

Page | 50

[23] Tong Li; Yingtao Li; Zhongtuo Wang, "Application of Plant Growth Simulation

Algorithm on Solving Discrete Facility Location Weber Problem," Innovative

Computing Information and Control, 2008. ICICIC '08. 3rd International

Conference on, vol., no., pp.145, 145, 18-20 June 2008.

[24] Yu Dejian; Zhou Dequn; He Xiaorong, "A weighted grey target theory-based

strategy model for emergency facility location," Grey Systems and Intelligent

Services, 2009. GSIS 2009. IEEE International Conference on, vol., no., pp.1158,

1162, 10-12 Nov. 2009.

[25] Shishebori, D.; Mahnam, M.; Nookabadi, A.S., "An efficient approach to discrete

Multiple Different Facility Location Problem," Service Operations and Logistics,

and Informatics, 2008. IEEE/SOLI 2008. IEEE International Conference on,

vol.2, no., pp.2519, 2524, 12-15 Oct. 2008.

[26] Bin Yi; Rongheng Li, "Approximation algorithm for the k- product uncapacitated

facility location problem," Computer Science and Information Technology

(ICCSIT), 2010 3rd IEEE International Conference on, vol.5, no., pp.602, 605,

9-11 July 2010.

[27] Velazquez, E.; Santoro, N., "Distributed Facility Location for Sensor Network

Maintenance," Mobile Ad-hoc and Sensor Networks, 2009. MSN '09. 5th

International Conference on, vol., no., pp.237, 243, 14-16 Dec. 2009.

[28] Diabat, A.; Abdallah, T.; Al-Refaie, A.; Svetinovic, D.; Govindan, K., "Strategic

Closed-Loop Facility Location Problem With Carbon Market

Trading," Engineering Management, IEEE Transactions on , vol.60, no.2,

pp.398,408, May 2013.

[29] Ling Hu; Wei-Shinn Ku; Bakiras, S.; Shahabi, C., "Spatial Query Integrity with

Voronoi Neighbors," Knowledge and Data Engineering, IEEE Transactions on ,

vol.25, no.4, pp.863,876, April 2013.

