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Abstract 

 

In present world it is hard to survive without new technologies and internet. New 

technologies and applications have made our life much comfortable and luxurious. 

Searching for a facility near to many customers is such a problem that even an 

approximately correct answer can save lot of labor, time and money. The essence of 

all the facility location problems is to determine the location of the facility and the 

allocation of the demands of customers, under the condition of the minimum of the 

cost. This work presents a possible solution for decision makers to reach facility 

approximately nearer to all customers. In this thesis work an algorithm to tackle 

nearest facility location for multiple customers has been proposed. It tackles the 

problem by considering not only the aggregate distances of all customers but also the 

maximum difference between the farthest customer and nearest customer. It takes 

time of order O(n log n) as it is based on voronoi diagram of order O(n log n) and its 

own time is of linear order. 

The proposed algorithm tackles the problem of finding the nearest facility for multiple 

customers by considering two criteria. The first one is minimizing the aggregate 

distances i.e. sum of total distances covered by all the customers. The second one is 

minimizing the maximum difference i.e. the difference between the farthest customer 

and the nearest customer. The approach given here uses voronoi diagram construction 

algorithm as its base algorithm. To find the voronoi diagram of a given space Plane 

sweep algorithm or Fortune’s algorithm named after its inventor is used which 

computes voronoi diagram in O(n log n) and is   one  the   most   efficient  algorithm  

known  for  computing  voronoi diagram. 

The proposed algorithm is tested for various test cases and the result is in accordance 

with the expected answer for the problem. In future this application can be 

implemented using hybrid techniques which are the combination of techniques to find 

the nearest facility. The ultimate goal is to find the nearest facility as per the situation 

and requirement in a fast and efficient manner. 
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Chapter 1 

Introduction 

 

1.1 Motivation          

In everyday life people come across many times with situations like finding a place 

which is near to everyone who wants to gather for particular reason. For example, 

there are four friends who live in different part of a city. They decided to watch a 

movie running in all theatres in the city. So they all now plan to meet at a theatre. But 

the question is which one? Which of the theatre they should select so that it is almost 

at equal distance from every friend? Two situations arise when finding the solution of 

this condition. In first case they may come with a solution as a theatre which is nearer 

to three of them but farther from fourth friend i.e. nearer to many but farther for 

remaining. No doubt in this way they can minimize the total distance covered by all 

the friends but at the cost of few friends covering major distance, which is not fair. In 

that condition the friend farther from selected theatre may decide not to come. But 

they don’t want that their friends take a decision like this. So they want to find the 

theatre which is at a reasonable distance from every friend’s location. In the second 

case they want to select a theatre so that the difference between distances travelled by 

any two friends is minimum. But in this case they may select a theatre far from 

everyone that is at a distance roughly equal for every friend; hence the difference 

between distances travelled by any two friends is minimized. So this is also not the 

solution we are looking for.  

Hence a solution is required which gives a facility (theatre in above example) which is 

near to every query point (friends in above example). This thesis work deals with the 

problem as stated above to find a point (object) in space which is approximately at 

equal distance from multiple query points. It is discussed how we can apply different 

approaches to solve this problem and the one which is applied in this work. Here the 

problem of nearest point of interest to a group of query points is tackled with the use 

of voronoi diagrams.  

The Voronoi diagram is a versatile geometric structure. We have described an 

application to social geography, but the Voronoi diagram has applications in physics, 



Page | 2  
 

astronomy, robotics, and many more fields. It is also closely linked to another 

important geometric structure, the so-called Delaunay triangulation. 

1.2 A brief review of Voronoi Diagram 

The name voronoi was coined after the name of a Russian mathematician Georgy 

Feodosevich Voronoy. He did initial work on voronoi structure. In fact it also been 

called by other names like Dirichlet tessellations, Wigner-Seitz zones, Thiessen 

polygons and Domains of actions, most of which are the names of early researchers 

on this construct in different fields of science. 

The Voronoi diagram of n sites in a plane and its dual, the Delaunay triangulation, are 

considered to be the most important constructions or technique in the area of 

computational geometry as well as in some other fields of vision and biology, 

archeology, computer-aided design, chemistry, geography, pattern recognition, 

physics, etc. Because of practical and theoretical usefulness of Voronoi diagrams (and 

Delaunay triangulation), their characteristic features, properties as well as algorithms 

to construct these diagrams are extensively studied and covered in standard text books 

of the field, and in numerous papers. 

1.2.1 Definition and basic properties      

Euclidean distance between two points p and q, dist(p,q), is given by 

                        dist(p,q) = 22 )()( qpqp
yyxx

  

Let P = {p1, p2….pn} represents a set of n distinct points in any plane then these 

points can be considered as sites for voronoi diagram. The voronoi diagram of set 

P{p1,p2….pn} can be defined as the division of plane into n cells or region, , one for 

each site in P set, with the property that a point q lies in the cell corresponding to a 

site pi if and only if the dist(q,pi) < dist(q, pj) for each pj ∈ P with j   i. In other 

words, the voronoi diagram is the division of space in such a way so that any point 

that lies in the region of a site has this site as the nearest site as compared to others 

[1]. Sometimes the meaning of voronoi diagram is taken as the subdivision of space 

showing only vertices and edges. V(pi) is used to represent the cell of site pi, said as 

voronoi cell of pi. To understand the structure of complete voronoi diagram it is 

required to study the structure of single voronoi cell first.  

 The bisector between two points p and q is defined as the perpendicular 

bisector of pq. The bisector between two points divides the planes into two 
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equal halves. The half-plane that contains the p in it is represented by h(p,q) 

and the half plane that contains the point q in it is represented by h(q,p). A 

point r lies in the half plane of p iff dist(r,p) < dist(r,q). 

 A voronoi cell is created as a result of area bounded by the perpendicular 

bisectors between a site and every other site in the plane. But as an 

observation it can be showed that not every bisector define the edges of a 

voronoi cell. In other word a voronoi cell is created by the intersection of the 

half planes which contains the site in it. This thing can be stated in formal way 

as 

 

                                                  V( ip ) = ijnj ji pph
 ,1 , )(   

 

 

 According to above property, in extreme case the voronoi cell is made up of   

n-1 half plane intersection. Thus V(pi) is a region constructed as the 

intersection of n-1 half planes. Hence it is convex in shape that is bounded by 

at most (n-1) vertices and at most (n-1) edges. 

 

                                               

                                                    

 

 

 

 

 

Figure 1.1 A single cell of voronoi diagram 

 

 Every edge in voronoi diagram is a straight line. It may be a line segment or 

half line (bounded from one side and free from other). Sometimes infinite 

lines also represent an edge of a voronoi diagram but that is a special case 

where all the sites are collinear and other edges are also infinite lines. 

 It can be put in the form of formal statement as property of voronoi diagram: 

Let P{p1,p2….pn} be a set of points in the plane representing as sites. The 

voronoi diagram will have all the edges as infinite parallel edges if all the sites 



Page | 4  
 

are collinear otherwise the voronoi diagram will have one (in case when there 

are only three sites) or more than one intersection point (vertices) and the 

edges will be either line segments or half infinite line. In this case the voronoi 

diagram will be a connected diagram. 

                            

 

                                 

Figure 1.2 A typical vornoi diagram 

                             

 In a voronoi diagram, for sites(n)   3 the number of vertices is at most 2n-5 

and the number of edges is at most 3n-6.                                        

 Edges are the part of perpendicular bisectors between two sites. The numbers 

of bisectors are quadratic in nature but the complexity of voronoi diagram is 

linear. Hence not all the bisectors define the edges of the voronoi diagram and 

hence not all the intersection of these bisectors defines the vertices of voronoi 

diagram. 

 To characterize which perpendicular bisectors contribute in defining the edges 

and vertices of a voronoi diagram the concept of largest empty circle is used. 

 For any point q in voronoi diagram, if a circle of maximum size is drawn by 

taking q as its centre so that the circle does not contain any site inside it, is 

called as the largest empty circle of point q in P (set of sites), denoted as 

CP(q). 
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Figure 1.3 A largest empty circle of point q with respect to P 

 

 A point q is a vertex of voronoi diagram Vor(P) if and only if the largest 

empty circle of q with respect to P, CP(q) contains three or more than three 

sites on its circumference. 

 The perpendicular bisector between two sites define an edge if and only if 

there is a point on the bisector such that the largest empty circle of q with 

respect to P, CP(q) contains only these two sites on its circumference and no 

other site. 

 

                                                       

 

Figure 1.4 Largest empty circle defining the edge and vertex 

                                                                

1.2.2 Importance of voronoi diagram 

Voronoi diagram is a very important construct because of the following points: 

 Voronoi diagram is found in nature in various situations and various forms. 

Various types of voronoi diagrams can be used to define the pattern found in 

nature. 
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 Voronoi diagrams resembles many structure found in nature and are also related to 

various well known geometrical structure. Hence voronoi diagrams have 

interesting geometrical and mathematical properties which can be used to solve 

mystery of nature. 

 Voronoi diagram can be used to solve various complex computational problems 

when used as data structure. It is used as strong tool to solve many computational 

problems specially related to geometric structures.  

 If any geometric problem can be molded in the form of voronoi diagram, then its 

many characteristics and properties can be found by simulating it in the form of 

voronoi diagram.  

 Hence by considering above points it could be said that voronoi diagrams are 

useful in solving problems related to field of mathematics, geometry, natural 

science and algorithms. 

1.2.3 Variations of voronoi diagrams 

Voronoi diagrams have emerged from the very basic voronoi diagram to highly 

complex in nature to solve required complex problems. From the beginning of its 

invention and use its now have covered diversified fields even those which seems to 

be not related to computational geometry.  

The major varieties of voronoi diagram are stated in following section [2]. 

(a) Based on order (k) 

In this variation of voronoi diagram, regions of voronoi diagram are defined by a 

subset Pi   containing k sites from whole set of sites P [3].  Every point that is nearer to 

these k sites as compared with other remaining sites lie in a region.  

A point q lies in a region of Pi  if and only if d(q,a) < d(q,b) for each a in the set Pi and 

for each b in the set (P-Pi).  When the value of k=1 the voronoi diagram becomes 

simple point voronoi diagram where regions are formed on the basis of locality of a 

single point. 
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Figure 1.5 Classification of voronoi diagrams on the basis of different criteria 

 

(b) Based on dimensions (d) 

Voronoi diagram can be categorized on the basis of the dimensions in which it is 

defined. 

For defining voronoi diagram above two dimensions the concept of facets and edges 

is used. It is used to represent real world objects and other more complex concept. 
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L2 metric d. f. 

Lp metric d. f. 
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d. f. 

Weighted 

site 

Dynamic 

Static 
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(c) Based on shape of sites 

 Point site: when the shape of sites is point. 

 Line segment site: when instead of point a line segment defines the site and its 

region. 

 Circular site: when site is in the form of a circle. This type of voronoi diagram is 

used in robot navigation in proximity detection. 

 Polygonal sites: in this type of voronoi diagram connected polygon are treated as 

the sites. 

 Weighted site: in this type of voronoi diagram each site may have different 

weight assigned to them based on the contribution of the sites in the set. 

(d) Based on distance function 

 Quasi-eucledian distance function: here distance is measured in terms of quasi-

eucledian distance. 

 Lp metric distance function: here Lp metric is used as a distance function. 

 L2 metric distance function: here L2 metric is used as a distance function. 

(e) Based on nature 

 Static: in this type of voronoi diagram sites are known in advance and hence 

information is available before the process of computing voronoi diagram. 

 Dynamic: in this type of voronoi diagram, either sites are in constant motion or 

the sites are added or deleted dynamically.  

1.2.4 Some applications of Voronoi Diagram: 

 In  the  field  of  geometry, voronoi  diagrams  can  be  used  to  find  the   

appropriate location  to   open   new   branch   of   any   business    as  far from    

others   as possible by using the largest empty circle property of voronoi diagram. 

 Voronoi diagrams coupled with the farthest point voronoi diagram are used for 

finding efficient algorithms to compute roundness of a set of points. 

 In the field of networking voronoi diagrams can be used to calculate the capacity 

of a wireless network and construction of Wi-Fi radio map [4]. 
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 In the field of epidemiology, Voronoi diagrams can be used to correlate many 

sources of infections in epidemics. Such use of voronoi diagram is mentioned in 

the history by John to study the 1854 Broad Street cholera outbreak in Soho, 

England. He correlated areas on the map of London using a particular water pump 

and the areas where most deaths due to the outbreak occurred. 

 Voronoi diagrams, known as Thiessen polygons in the field of climatology are 

used to calculate the overall rainfall based on the series of point measurements. 

 Finding nearest neighbor problems are related to many other problems and 

application, such as finding the nearest hospital or chemist or nearest police 

station. To answer nearest neighbor queries, voronoi diagram can be used as a 

point location data structure.   

 In the field of ecology the voronoi diagrams are used to study the growth pattern 

of forest. It can prove useful to prevent fire by building some preventive measures 

to predict the fire.  

 The voronoi diagram can be used to assess the circularity or roundness of the 

dataset with the help of coordinate measuring machine. 

 In the field of polymer physics, voronoi diagram are used to represent fee 

volumes of polymers so that a quality polymer can be made. 

 In the field of computational chemistry, Voronoi cells defining the positions of 

the nuclei in a molecule are used to compute atomic charges. Voronoi 

deformation density method is applied here. 

 In the field of mining, voronoi diagrams are used to find the reserves of very 

useful minerals and other materials. In this technique exploratory drill holes 

represents the set of sites in the voronoi diagram.  

 In the field of materials science, polycrystalline microstructures in metallic alloys 

are commonly represented using Voronoi tessellations. 

 In computer graphics, Voronoi diagrams are used to generate some specific set of 

texture like organic or natural substance. 

 In the field of robotics, to find the path of a robot navigating through many 

obstacles [5]. 

http://en.wikipedia.org/wiki/Epidemiology
http://en.wikipedia.org/wiki/1854_Broad_Street_cholera_outbreak
http://en.wikipedia.org/wiki/Computational_chemistry
http://en.wikipedia.org/wiki/Partial_charge
http://en.wikipedia.org/wiki/Voronoi_deformation_density
http://en.wikipedia.org/wiki/Voronoi_deformation_density
http://en.wikipedia.org/wiki/Materials_science
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Chapter 2 

Literature Review 

 

2.1 Various voronoi diagram construction algorithms  

The existence of different types and uses of Voronoi diagrams requires their computer 

construction to vary accordingly. This section reviews methods for the computer 

construction and representation of planar Voronoi diagrams which have been 

designed and/or implemented before.  

2.1.1 Divide and Conquer Construction  

A most common approach that is used to solve many problems, divide and conquer is 

also applied to construct voronoi diagram. In this methodology the given n sites are 

divided into two sets by a vertical line and then this approach is applied on recursively 

until single sites are left. Then after computing diagram for small number of sites 

merging steps occur resulting in a final diagram of voronoi. It is calculated that a 

merging process takes O(n) time. Hence full voronoi diagram can be computed in   

O(n log n). This way voronoi diagram can be computed in efficient way.  

Let P be a set of n points in the plane. The points are vertically partitioned into two 

subsets R (red) and B (blue). Consider the Voronoi diagram of the sets R and B. Then 

the Voronoi diagram of P substantially coincides with the Voronoi diagrams of R and 

B. In fact, there exists a monotone chain of edges of Vor(P) such that Vor(P) 

coincides with Vor(R) to the left of the chain, and it coincides with Vor(B) to its right. 

 Let b(R, B) be the set of all edges and vertices of Vor(P) belonging to the common 

boundary of the regions of some pi ∈ R and pj ∈ B. The bisector b(R, B) contains two 

half-lines, belonging to the bisectors bij of the two “bridges” connecting the convex 

hulls of R and B. The bisector b(R, B) is a y-monotone chain leaving the regions of 

the points pi ∈ R  to its left and those of pj ∈ B to its right. Let R and B respectively be 

the regions of the plane located to the left and to the right of b(R, B). 
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Figure 2.1 Divide and conquer approach 

 

The bisector b(R,B) is a y-monotone chain leaving the regions of the points pi ∈ R to 

its left and those of pj ∈ B to its right. Let R and B respectively be the regions of the 

plane located to the left and to the right of b(R, B). Then Vor(P) consists of       

Vor(R) ∩ πR, Vor(B) ∩ πB and b(R, B).  Let e be an edge of Vor(P). If e separates 

two points of R in Vor(P), then it is (a portion of) the edge separating them in Vor(R). 

Due to Observation 2, e cannot belong to πB. If e separates two points of B, the case 

is analogous. If e separates one point of R from one of B, then e ∈ b(R, B). 

 

Algorithm 2.1 Divide And Conquer Algorithm 

1. Sort the points of P by abscissa (only once) and vertically partition P into two 

subsets R and B, of approximately the same size. 

2. Recursively compute Vor(R) and Vor(B). 

3. Compute the separating chain. 

4. Prune the portion of V or(R) lying to the right of the chain and the portion of V or 

(B) lying to its left. 



Page | 12  
 

2.1.2 Construction by Transformation  

By transforming geometrical problems into easily understandable and solved 

problems is very helpful in solving the geometrical problems. Following in this way 

many attempts have been made to transform other well-known geometrical algorithms 

into the voronoi construction algorithm [2]. These include one dimensional reduction, 

Delaunay triangulation and other higher order dimensional embedding. The 

transformation process takes O(n) time in most of the cases and hence construction 

efficiency depend on the construct from which it is derived. 

2.1.3 Construction through Delaunay Triangulation  

The planar voronoi diagram and Delaunay triangulation are dual of each other. 

Delaunay triangles correspond to voronoi vertices and Delaunay sites correspond to 

voronoi regions. Hence a voronoi diagram can be made from Delaunay triangulation 

in O(n) time [6].  

The graph G has a node for every Voronoi cell—equivalently, for every site—and it has 

an arc between two nodes if the corresponding cells share an edge. Note that this 

means that G has an arc for every edge of Vor(P). In given figure, there is a one-to-

one correspondence between the bounded faces of G and the vertices of Vor(P). 

 

  

(a) Voronoi diagram                                           (b) dual of voronoi diagram i.e.                                                                                                                    

                                                                             Delaunay triangulation                                          

Figure 2.2 Voronoi and its dual Delaunay triangulation 
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2.1.4 Higher Dimensional Embedding  

In geometrical sense, the convex hull is the dual of the voronoi diagram of given sites. 

The voronoi diagram in R2 can be converted into convex hull in R3 and vice versa of 

that in O(n) time. Easy generalization to higher dimension is the main feature of 

embedding method. For determining convex hull of higher dimensions, many 

algorithms are known. Therefore an efficient method for computing worst case 

computation of d-dimensional voronoi diagram exists.   

2.1.5 Incremental Construction  

One of the method famous for its simplicity is the incremental method of constructing 

voronoi diagram in the plane in an incremental way in which the construction begin 

by initially few points and then remaining points are added one by one. When new 

site is entered the whole new voronoi diagram for all the sites including the site 

entered recently is constructed and displayed. The whole process of construction in 

this way can be divided into two major parts. In first part, the region of new site 

entered in old diagram is found. In second part, the boundary of new region of entered 

site is calculated edge by edge. This is done by calculating the edge between the 

newly entered site and the old sites that will share a common boundary with newly 

entered site [7]. 

This algorithm is much simple though its time complexity is O(n2) hence it cannot be 

used where speed matters. That resulted in further search for improving it. One such 

improvement made by researchers was that they tried to speed up the insertion up 

using the randomization [8]. As with other geometrical algorithms, numerical error 

comes up in the process of construction using incremental approach which is the 

major drawback of this algorithm. Some proposals were made to make the strategy of 

insertion robust against numerical error [9]. 

 

Algorithm 2.2 Incremental Algorithm 

1. Starting with the Voronoi diagram of {p1….pi} add point pi+1 

2. Explore all candidate to find the step pj (1 ≤ j ≤ i) closest to pi+1 

3. Compute its region 

4. Build its boundary starting from bisector bi+1 

5. Prune the initial diagram. 
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6. While building the Voronoi region of pi+1, UPDATE DCEL(Doubly Connected 

Edge List). 

                    

 

Figure 2.3 Incremental algorithm in progress 

 

UPDATE DCEL 

Each time an edge e, generated by pi+1 and pj, intersects a preexistent edge, e΄, a new 

vertex V is created and a new edge starts, e + 1. Then, these are the tasks to perform: 

1.  Assign VE(e) = V, eN(e) = e΄, fL(e) = i + 1, fR(e) = j 

2. Create e+1 and assign VB(e+1) = V, eP (e + 1) = e   

3. Delete all edges of the region of pj, that lie between VB(e) and VE(e) in clockwise 

order 

4. Update e(pj) = e 

5. Create v with e(v) =  e 

Running time: Each step runs in O(i) time, therefore the total running time of the 

algorithm is O(n2). 
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2.1.6 Dynamic Construction  

As with many data structure, voronoi diagram can be made dynamic so that it can 

maintain set of sites which are added and deleted randomly. It is easy to handle the 

case of addition but for deletion suitable data structure is required to support deletion 

process. Attempts have been made to handle insertions and deletions of sites in O(n) 

time with the help of voronoi tree that occupies O(n log n) space [10]. 

2.1.7 Parallel Construction  

Parallelizing the algorithms in the field of computational geometry are not an easy 

task because of the sequential nature of many techniques used for it. Because the 

voronoi diagrams are of great importance, efforts have been made [11] to make it 

work in a parallel environment. Parallel algorithm for construction of voronoi diagram 

has been suggested by some researchers [12]. 

2.1.8 Plane-Sweep Construction  

Another useful algorithm in the field of computational geometry to construct voronoi 

diagram is the plane sweep algorithm [13]. This works by decreasing the dimension of 

the problem as opposed to embedding method. The static problem of construction of 

voronoi diagram is converted to a dynamic problem of storing the cross section of 

voronoi diagram with straight line. This algorithm maintains a sweep line that goes 

from one side of the diagram to other sweeping through the sites of voronoi diagram. 

At any stage the swept portion of the diagram is complete and the remaining not 

swept area is incomplete and yet to be discovered by the sweep line.  

Fortune [14] initially observed that updating the sweep line can be used with cost of 

O(log n) time when certain continuous deformation of the diagram is treated, and 

from this deformed diagram original diagram can be made in the time of order O(n). 

The plane sweep method of constructing voronoi diagram is simple as well as 

efficient. It takes time of order O(n log n) and space of order O(n) and hence it is one 

of best algorithms known to construct voronoi diagram. 

A simple method to construct voronoi diagram is: for each site pi, calculate the 

common intersection of the half-planes h(pi,pj) with j   i, using the naïve algorithm. 

In this manner time of order O(n log n) is spent on every voronoi cell summing upto 

O(n2 logn) time spent on construction of full voronoi diagram. Voronoi diagram has 

the complexity of the linear order. The plane sweep algorithm used in this thesis 
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work, also known as the Fortune’s algorithm takes O(n log n) time to construct the 

voronoi diagram. The problem of sorting n numbers is reducible to the problem of 

computing the voronoi diagram in the plane. Hence any algorithm must take Ω(n log 

n) time to compute the voronoi diagram in the worst case. Therefore the Fortune’s 

algorithm is optimal. 

2.2 Literature review of facility location problem  

The competitive facility location problems has been investigated in many papers and 

been a subject of interest for many researchers. In most of the papers competitive 

location model for two competitors are given. Three companies that are in mutual 

competition to each other and intend to locate their facility on linear market [15]. It is 

known that Nash equilibrium solution does not exist for location problem of three or 

more competitive facilities.  

The demands are continuously distributed on the market and facilities are located in 

some specific order of sequence A, B and C. Stackelberg equilibrium solution for 

three competitive facilities are considered. It considered the decision problems of 

three stages. In the first stage problem it consider the facility location for A so that it 

is optimal with respect to B and C. In the second stage problems it finds the optimal 

location of facility B with respect to facility C by using the information related to 

facility A. In final stage problem it finds the optimal location of the facility C by 

utilizing the information stored in the facilities A and B. This model has been 

represented as three stage decision problems.  

Mobile facility location problem assigns each facility and client a start location in a 

metric graph. A destination node for each client and facility is to be found such that 

every client is sent to a node, same as that of destination of some facility. The total 

distance clients and facilities travels or by the maximum distance traveled by any 

client or facility determines the quality of a solution. The total movement of facilities 

and clients is minimized in [16] which generalize the classical k-median problem. 

[Demaine et al. in SODA 2007] introduced class of movement problems where it was 

observed a simple 2-approximation for the minimum maximum movement mobile 

facility location while an approximation for the minimum total movement variant and 

hardness results for both were left as open problems.  
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An 8- approximation algorithm for the minimum total movement mobile facility 

location problem main result here was main result. This problem generalizes the 

classical k-median problem preserving reduction. There cannot be better than a 2-

approximation for the minimum maximum movement mobile facility location 

problem, unless P = NP; so the simple algorithm observed is essentially best possible. 

Many location researchers have challenged the difficulties in multi-factor analysis of 

location decisions. The development of a novel geographic information system, based 

decision support system (GISDSS), is proposed by C. Jungthirapanich, and T. 

Pratheepthaweephon [17] for supporting high quality decision making in the facility 

location domain. A chromatic representation location model and vastly accepted 

location factors is incorporated by GISDSS. To manipulate data, and identify suitable 

sites, a geographic information system (GIS) is used with the location model. Input 

data is analyzed by the model and provides the best locations through the hue, 

saturation, and value (I-ISV) color model. 

A unique color with its own chromatic representation is assigned to each location 

factor. The color saturation is varied, ranging from 0 as the most important to 1 as 

unimportant, to express the levels of importance of location factor. Variance in 

vertical value (V) depicts the scores for location alternatives, with 0 as the highest 

scores and 1 as the lowest. Thus with the combination of H, S, and V composite color 

can be visualized. The color displayed can also be stated quantitatively using the color 

equation. Thus recommended location can be effectively specified in both numerical 

and graphical formats. 

To determine the location of the facility and the allocation of the demands of 

customers is the essence of all the facility location problems (under the condition of 

the minimum cost). An all-purpose bi-level simulated annealing algorithm (BSA) has 

been presented by Ren Peng [18] for the facility location problem, which is based on 

character and the idea of the standard simulated annealing algorithm. To solve the 

problem, the BSA is divided into two layers as inner layer and outer layer. For the 

decision of the facility location, outer algorithm is optimized and inner algorithm is 

optimized for the allocation of customer’s demand under the given decision of the 

outer algorithm. 
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The hierarchical facility costs are a special case of the setting in which the facility 

cost is a more complex function of the set of clients, assigned to a single facility, and 

the algorithm, for the problem independent of the number of levels in the hierarchy 

tree and for the case of identical costs on all facilities, does not simply depend on their 

number. The bound is improved to 4.236 using scaling and accepting only sufficiently 

large improvements, it can be turned into a polynomial time (4.236+ ε)-approximation 

algorithm for the hierarchical facility location problem [19]. A facility cost, that is an 

arbitrary sub-modular function cost(S) of the set of clients S assigned to the facility, 

defines a more general class of such problems. 

With multiple transport alternatives, Yosuke Takano and others, [20] presented a 

modeling and optimization of facility location and distribution planning problems. 

The problem is to determine an optimal facility location with respect to management 

strategy, by using huge physical distribute on data. Two types of problems are 

considered. The first one is a facility location problem with transportation from depot 

to customer and a direct transportation from factory to customer simultaneously. 

Large size problem is solved efficiently by applying lagrangian relaxation. The 

second one is the competitive facility location problem with multiple competing 

companies. With this distribution profit’s effectiveness is shown by collaborative 

decision making. 

For the facility location optimization problems, which has earned extensive research 

interests, Maximal covering location problem (MCLP) is one of the well-known 

model. However the application of the traditional formulation of MCLP is limited by 

various practical requirements and effective approaches for large scale problems is 

made extremely difficult by the NP-hard characteristic. Li Xia and others [21] focused 

on a facility location problem motivated by a practical project of bank branching. The 

traditional MCLP formulation has been generalized as a mixed integer programming 

(MIP) with considerations of various costs and revenues, multi-type of facilities and 

flexible coverage functions. For large scale problems, a CPLEX ·based hybrid nested 

partition algorithm has been developed and to deal with extremely large problems, 

heuristic-based extensions have been introduced. The formulation and algorithm are 

embedded into an asset called IFAO-SIMO. The effectiveness and efficiency of the 

approach is demonstrated by the numerical results. 
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Shuming Wang and others [22] have dealt with problems, under a hybrid uncertain 

environment, involving randomness and fuzziness. A two-stage fuzzy random facility 

location model, with recourse, is developed in which the demand and the cost are 

assumed to be fuzzy random variables. As in general, the fuzzy random parameters in 

the model can be regarded as continuous fuzzy random variables with infinite 

realizations, the computation of the recourse requires solving a large number of 

second-stage programming problems. Due to this fact, the recourse function cannot be 

calculated analytically, which implies that the model cannot benefit from the use of 

methods of classical mathematical programming. A technique of fuzzy random 

simulation is developed in order to solve the location problems of this nature. In the 

sequel, by combining the fuzzy random simulation, i.e. simplex algorithm and binary 

particle swarm optimization (BPSO), a hybrid algorithm is proposed for solving the 

two-stage fuzzy random facility location model.  

Based on Plant Growth Simulation Algorithm (PGSA), Li tong with others [23] 

proposed a bionics algorithm to solve facility location problems. On comparing the 

calculating results of PGSA with Genetic Algorithm (GA) for distribution center 

location problem, it is found that PGSA is better than GA in term of accuracy. By 

selecting 50 customers randomly, it also solve Weber location problem with different 

facility numbers. With respect to other heuristic algorithms, PGSA can find global 

optimal solutions. Meanwhile, according to the different facility numbers, it combines 

global and local optimal solutions and set up optimal facility location arrangement as 

a whole. The algorithm discussed here shows its accuracy, astringency and 

generalization. Solving location problems is an actual application of PGSA. 

Timeliness is one of the most important objectives as it reflects the quality of 

emergency rescue. To increase the number of service facility available is the most 

obvious way for providing timeliness. Unfortunately, due to capital constraints, 

increasing the number of facility is generally impossible. In such a case, the strategy 

for emergency facility location becomes an important issue. YU Dejian with others 

[24] discussed the facility location strategy in emergency management, combining 

subjective judgment and objective analysis, and proposed an emergency system 

location model which is based on weighted grey target strategy theory. Finally, an 

application example verified that the method is effective one for solving the 

emergency facility location issue. 
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The Multiple Facility Location Problem (MFLP) is to locate certain facilities so as to 

serve optimally a given set of customers, whose requirements and locations are 

known. When facility locations have to be selected from a given set of locations, the 

corresponding location problem becomes a Discrete Multiple Facility Location 

Problem (DMFLP). In this study Davood Shishebori with others [25] considered a 

special case of DMFLP where multiple facilities that are of different type are placed 

(location decision) and assigned customers to these facilities (allocation or 

assignment). The case will be discussed based on interactions (with and without) 

among new facilities. Then proposed are new heuristic solution methods and branch-

and-bound algorithms. Computational results on randomly generated data, in 

comparison with optimal solutions, indicates that the new methods are, both, accurate 

and efficient. 

Bin Yi+ and Rongheng Li [26] considered one kind of uncapacitated facility location 

problem which is termed as k-product uncapacitated facility location problem with 

no-fixed costs (k-PUFLPN). The problem can be defined as follows: There is a set of 

demand points, where clients are located and a set of potential sites, where facilities of 

unlimited capacities can be set up. K different kinds of products are there. Each client 

needs to be supplied with k different kinds of products by a set of k different facilities 

and each facility can be set up to supply only a distinct product, with no fixed cost. A 

non-negative cost of shipping goods is there in between each pair of locations. These 

costs are assumed to be symmetric and also satisfy the triangle inequality. A set of 

facilities, which are to be opened, and their designated products is to be selected  and 

has to find an assignment for each client within a set of k facilities to minimize the 

sum of the shipping costs. In this paper, an approximation algorithm was proposed 

with a performance guarantee of (3/2) k -1 for the k-PUFLPN. 

The continuous growth of wireless sensor networks demands new methods and 

approaches to efficiently manage and service them. Elioz Velazquez and others [27] 

presents an approximate solution to the facility location problem for sensor network 

maintenance, which is based on static sensors and mobile facilities. To increase the 

network lifetime by recharging or redeploying sensors with the help of mobile multi-

purpose maintenance facilities is the main objective. Problem is variant of the facility 

location problem (FLP). In this case, a suitable deployment of the facilities is to be 

done in which their workload is balanced and the movement of the facilities, in their 
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area, is minimized. It should be accomplished keeping the number of sensor 

communications at minimum. While finding the optimal placement of the 

maintenance facilities is a NP-hard problem, this work [27] showed a simple and 

efficient solution, totally distributed and localized, which starts with a balanced 

deployment, progresses towards final partition of remarkable quality. Such a final 

partition satisfies the load balancing requirement and minimizes the facility travel 

time. The experimental analysis of such solution shows that sensor message cost 

remains low as the size of the network increases. The experiments also show a load 

distribution which is similar and sometimes better than centralized deployment 

solutions. 

Environmental regulations are forcing companies to comply with environmental 

policies so as to control carbon emission. It is required for companies to green their 

supply chains. One way to do this is extending the supply chain to collection and 

recovery of products in closed loop configuration. Profitable reverse logistics to 

restore the recovered product can be used so as to resell it in primary or secondary 

market. Ali Diabat and others [28] have introduced a multi-echelon multi-commodity 

facility location problem with a trading price of carbon emissions and a cost of 

procurement. If carbon cap is higher than the total emission then company gains but if 

carbon cap is less than the total emission then company might incur cost. 
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Chapter 3 

Problem Statement 

 

3.1 Gap analysis and related work 

Facility location problem or location analysis or problem of k-center is a branch of 

computational geometry and operations research that deals with location of facilities 

so as to optimize specific requirement in the problem. It convert real life problem into 

mathematical problem and then modeling it to find the solution of the problem using 

many facility location algorithms. The target of problem solving can be minimizing 

transportation costs, placing harmful substance or radio-active substances at farthest 

location or locate facility in a competitive environment. Initially used for locating 

facilities, this field now has been expanded covering many advance fields like data 

clustering, classification, databases, unsupervised learning, data mining, spatial range 

query and spatial query integrity [29]. 

In its basic form, the facility location problem contains a set of facilities F from which 

a subset of facilities, Fi, are to be placed so as to satisfy demands of set of demand 

points C. The goal here is to locate the facilities in such a way so as to minimize the 

distance from each facility to demand points. Sum of costs of opening the facilities 

should be minimized.        

The Facility Location problem when considered on general graphs is an NP-hard 

problem to be solved optimally, by reduction from the Set Cover problem or any other 

problem of this type. Many approximation algorithms have been proposed for solving 

the facility location (FP) problem and other variants of it because of the usefulness of 

the facility location problem in real life and many other fields. 

3.1.1 Nearest neighbor search 

In problem of nearest neighbor searching, a data points set of n points is given in a 

metric space, Q, The goal is to preprocess these given data points so that, given any 

query point q ∈ Q, a data point nearest to q can be found quickly. This is also known 

as the post office problem or the closest point problem in computational geometry. 
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3.1.2 Minisum facility location 

It is a simple facility location problem also known as Fermat-Weber problem. In this 

problem it is required to find a single point from which the sum of a given set of 

query points is minimum. In other words it can be stated as in Fermat-Weber problem 

a single point in space is located within a set of points with an optimization criteria of 

minimizing the sum of the distances of the points from other points. Some variations 

of above stated problem exists in which it is desired to place multiple facilities or 

there are more complex optimization requirements or constraints on the locations of 

facilities are there. 

3.1.3 Minimax facility location 

As it is obvious from the name of the problem, in this category of problems it is 

required to find or locate a point in the space so as to minimize the maximum distance 

between this point and sites where distance means the minimum distance between 

point and any one of the sites given.  

3.1.4 Maxmin facility location 

The maxmin facility location problem is the reverse of the minimax facility location 

problem. In this problem it is required to find or locate a point which maximizes the 

minimum distance of the point from the sites where distance means the maximum 

distance from point to any one of the sites given. 

3.2 Problem statement 

Given m facilities and n customers in a city, find the facility which is located at such a 

place so that the sum of distances from a set of customers is minimum. Also the 

maximum difference in distance for any two customers should be minimized to best 

possible solution preserving former criteria. 

3.3 Problem formulation 

Let F{f1,f2……fm} is a set of facilities located at different places and C{c1,c2…..cn} is 

a set of n customer residing at different location.   

Ci ⊆ C, for   i=1, 2………2n  

dist(x,y)= distance between x and y 

(i)Maximum difference, MD (fj, Ci) = MAX[dist(fj,cp)] - MIN[dist(fj,cp)]  ∀cp ∈Ci 

(ii)Aggregate Distance, AD (fj, Ci) = ∑dist(fj,ck) ,∀ ck ∈ Ci    
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To find a facility fi that minimizes the maximum difference and aggregate distance i.e. 

which minimizes the functions (i) and (ii) both. 

The problem of facility location is old enough and is solved by many researchers in 

many ways. Some of the major problem types of facility location problem are nearest 

neighbor search, Minisum facility location, Minimax facility location and Maxmin 

facility location. 

 Nearest neighbor search mainly deals with single query point searching for nearest 

facility. 

 Minisum or Fermet-Weber problem deals with only minimizing the aggregate sum 

of disatances of all the customer from the facility. 

 Minimax focusses only on minimizing maximum distance of any customer from 

the facility. 

 Maxmin focused only on maximizing minimum distance of any customer from the 

facility. 

In real life many times there are situations where an optimal solution is required 

which is the combination of solutions to each of the above problems. These problems 

deal with only one or two criteria. Hence a method is required which gives the 

optimal solution which has all of the above conditions satisfied. The algorithm 

proposed in this thesis tries to find out the approximately optimal solution in less time.  
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Chapter 4 

Implementation 

 

4.1 Preliminary of Fortune’s algorithm 

4.1.1 Background of Fortune’s algorithm 

In plane sweep line algorithm, a horizontal line goes from one side to opposite side 

sweeping through all the sites of voronoi diagram. During this process, the 

information of structure computed is maintained in data structures. When sweep line 

sweeps through the input voronoi sites, the information regarding the intersection of 

this line with the input voronoi sites area. During sweep, most of the time information 

stored remains same except during some special events known as site events. 

        

 

Figure 4.1 Beach line and sweep line 

This technique of plane sweep algorithm can be applied to construction of voronoi 

diagram of a given set of site points, P = {p1, p2….. pn} in a given plane. In this method 

a sweep line  keeps sweeping through the sites in the given set of sites from top to 

bottom (or bottom to top). The important thing here is that it is required to store the 

information of intersection of sweep line with the area of given sites as the sweep line 

moves downward.  But this is not an easy task because the structure above the sweep 

line does not depend on the sites above sweep line only but also on the sites below the 

sweep line. In other words, when sweep line meets a topmost vertex of any voronoi 

cell, it still doesn’t have the information about the site of that cell. So it doesn’t have 

all the necessary information required to compute the voronoi vertices of the cells 
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whose vertex is about to come and site is below the sweep line. Hence plane sweep 

method is needed to be applied in a slightly different manner.  

Instead of keeping the information of intersection of the sweep line with the sites area, 

information of the structure above sweep line that does not change further on moving 

of sweep line is stored i.e. part of the voronoi diagram above sweep line that is not 

affected by the sites below the sweep line is stored because it is static will not change 

till the end of computation of voronoi diagram of given sites.         

 

  

 

Figure 4.2 Beach line is x-monotone 

           

If area above sweep line  is denoted by  +   it is required to find out which part of 

voronoi diagram in area  + will not change further i.e. the points in area  + for 

which it is known about their nearest site. As it is obvious that the distance of any 

point q in  + from any site below the sweep line  will be more than the distance of 

q from sweep line  itself. Hence all points q whose distance to its nearest site in area 

 + is less than or equal to its distance from sweep line  , will lie in the cell of that 

nearest site and hence area made of all such points will not change as the sweep line 

moves. The area of such points is bounded by the parabola made of that nearest site as 

the focus and the moving sweep line as its directrix. Hence all such points are 

bounded by their respective parabola boundaries. The continuous arc formed by the 

combination of lowest part of these parabolas is called as the beach line. Because 
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beach line is formed by the lowest parts of all parabolas above the sweep line and is 

continuous therefore it is x-monotone i.e. any vertical line cuts it at only one point. 

It is observed that the one parabola can contribute to the beach line at more than one 

place.  A breakpoint is a point of intersection of two parabolas or the point where one 

parabolic curve changes into other new curve. These breakpoints between the 

parabolic arcs define the edge of the voronoi diagram. These breakpoints traces out 

edges as the beach line moves. 

Therefore beach line is maintained to construct voronoi diagram instead of storing the 

intersection of the sites area with the sweep line. The beach line is not stored 

explicitly as it keeps changing. It changes when any event either site event or circle 

event happens. In the site event a new arc appears on the beach line and in the circle 

event the arc disappear from the beach line and shrinks to a point that will define one 

of the vertex of the voronoi diagram. 

When sweep line reaches a new site in the unexplored site area, a degenerate parabola 

whose vertex and focus is the site itself and lies on the sweep line as its directrix. In 

other words, the width of the parabola at that time is nil. Hence a vertical line appears 

at that moment that connects the new site with the beach line above it vertically. As 

the sweep line sweeps towards down, the new parabola continue to widen. Now the 

new parabolic arc becomes the part of the old beach line. This process, when a new 

site is encountered is known as a site event and it is described in the figure below. 

 

 

Figure 4.3 stages of a site event 

          

At a site event, when the newly appeared parabola starts widening, it intersects old 

parabola at two points both acting as breakpoint of new beach line. These two 

breakpoints stars tracing out an edge of the voronoi diagram. At first this edge is not 
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connected to the part of the voronoi diagram constructed but later on this edge meets 

another edge hence creating a vertex of the voronoi diagram and becomes the part of 

already constructed voronoi diagram.   

Whole of the above explanation can be summed up in the following points as the 

properties of Fortune’s algorithm preliminaries: 

 The beach line is monotonic in nature over x axis i.e. any vertical line can 

intersect it at only one point. 

 Any new arc can appear on beach line through site event only 

 Any arc on beach line can disappear from it through circle event only. 

 Every vertex is detected by a circle event 

4.1.2 Data structures for Fortune’s algorithm 

(a) Doubly connected edge list (D): it is required to store the subdivisions of voronoi 

diagram computed so far. 

(b) Balance binary search tree (T): it is required to store beach line current status. 

Any leaf stores arc in the form of site forming it and internal nodes represent 

breakpoint stored in the form of tuple of sites <pi,pj>. 

(c) Priority queue (Q): it is required to store event queue where priority is decided 

by the y coordinates of the point. 

 Following is the algorithm to compute voronoi diagram using Fortune’s algorithm as 

explained by Mark de Berg [1]. 

 
Algorithm 4.1 Voronoi diagram algorithm  

VORONOIDIAGRAM(P) 

Input. A set P := {p1, . . . , pn} of point sites in the plane. 

Output. The Voronoi diagram Vor(P) given inside a bounding box in a doubly 

connected edge list D. 

1. Initialize the event queue Q with all site events, initialize an empty status structure 

T and   an empty doubly-connected edge list D. 

2. while Q is not empty 
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3. do Remove the event with largest y-coordinate from Q. 

4. if the event is a site event, occurring at site pi 

5. then HANDLESITEEVENT(pi) 

6. else HANDLECIRCLEEVENT(γ), where γ is the leaf of T representing the arc that 

will disappear 

7. The internal nodes still present in T correspond to the half-infinite edges of the 

Voronoi diagram. Compute a bounding box that contains all vertices of the Voronoi 

diagram in its interior, and attach the half-infinite edges to the bounding box by 

updating the doubly-connected edge list appropriately. 

8. Traverse the half-edges of the doubly-connected edge list to add the cell records 

and the pointers to and from them. 

The procedures to handle the events are defined as follows Mark de Berg [1]. 

Algorithm 4.2 Handle site event algorithm 

HANDLESITEEVENT(pi) 

1. If T is empty, insert pi into it (so that T consists of a single leaf storing pi) and 

return. Otherwise, continue with steps 2 - 5. 

2. Search in T for the arc α vertically above pi. If the leaf representing α has a pointer 

to a circle event in Q, then this circle event is a false alarm and it must be deleted 

from Q. 

3. Replace the leaf of T that represents α with a sub-tree having three leaves. The 

middle leaf stores the new site pi and the other two leaves store the site pj that was 

originally stored with α. Store the tuples  <pj, pi > and < pi, pj>  representing the 

new breakpoints at the two new internal nodes. Perform rebalancing operations on 

T if necessary. 

4. Create new half-edge records in the Voronoi diagram structure for the edge 

separating V(pi) and V(pj), which will be traced out by the two new breakpoints. 

5. Check the triple of consecutive arcs where the new arc for pi is the left arc to see if 

the breakpoints converge. If so, insert the circle event into Q and add pointers 

between the node in T and the node in Q. Do the same for the triple where the new 

arc is the right arc. 
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Algorithm 4.3 Handle circle event algorithm 

HANDLECIRCLEEVENT(γ) 

1. Delete the leaf γ that represents the disappearing arc α from T. Update the tuples 

representing the breakpoints at the internal nodes. Perform rebalancing operations 

on T if necessary. Delete all circle events involving α from Q; these can be found 

using the pointers from the predecessor and the successor of γ in T. (The circle 

event where α is the middle arc is currently being handled, and has already been 

deleted from Q.) 

2. Add the center of the circle causing the event as a vertex record to the doubly-

connected edge list D storing the Voronoi diagram under construction. Create two 

half-edge records corresponding to the new breakpoint of the beach line. Set the 

pointers between them appropriately. Attach the three new records to the half-

edge records that end at the vertex. 

3. Check the new triple of consecutive arcs that has the former left neighbor of α as 

its middle arc to see if the two breakpoints of the triple converge. If so, insert the 

corresponding circle event into Q. and set pointers between the new circle event in 

Q and the corresponding leaf of T. Do the same for the triple where the former 

right neighbor is the middle arc. 

All the three algorithms above have been taken from Computational Geometry: 

algorithms and applications by Mark de Berg [1].                 

Table 4.1 Comparison of various algorithms of voronoi construction 

Algorithm Time complexity Space complexity 

Naïve algorithm O(n2log n) O(n2) 

Incremental algorithm O(n2) O(n2) 

Divide and conquer O(n log n) O(n2) 

Fortune’s algorithm O(n log n) O(n) 
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4.2 Proposed algorithm 

4.2.1 Algorithm for nearest facility location for multiple customers 

The approach of finding the optimal facility is divided into two algorithms. First 

finding the voronoi diagram of facilities using any voronoi diagram construction 

algorithm. In this work, Fortune’s algorithm is used to calculate the voronoi diagram. 

Second computing the location of optimal facility by the proposed algorithm taking 

voronoi diagram of facilities Vor(F) and set of locations of customers C as input. The 

second algorithm uses the result of first algorithm to give output as a facility at 

optimal distances from all customers.  

Algorithm 4.4 nearest facility location algorithm  

NEARFACILOC( Vor(F) , C ) 

Input: voronoi diagram of facilities Vor(F), set of customer locations, C  

Output: facility fo optimal for all customers 

1. Give as input voronoi diagram, Vor(F) of facilities and locations of customers C. 

2. Create voronoi diagram for customers at different location by using 

VORONOIDIAGRAM(C). 

3. Find all the vertices of this voronoi diagram created in step 2. 

4. Find the coordinates of these vertices. 

5. Calculate the mean, M, of these vertices. 

6. Locate this mean in the original voronoi diagram of facilities. 

7. Find in which region or cell this mean, M, lies. 

8. Find the facility (site) of the above selected region or cell. 

9. Output the facility, fo found in above step as facility at optimal distances from all 

customers.   
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Figure 4.4 Flowchart of voronoi diagram construction using Fortune’s plane sweep 

algorithm 
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Figure 4.5 Flowchart of proposed algorithm 
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4.2.2 Explanation of working of proposed algorithm 

The proposed algorithm takes voronoi diagram as computed by using Fortune’s sweep 

line algorithm as one of the input, the customers location as being the other input of 

this algorithm. 

First of all, by treating customers location as sites, voronoi diagram of customers 

location is computed using the Fortune’s sweep line algorithm. The voronoi diagram 

is calculated in optimal time of O(n log n) which is the time complexity of Fortune’s 

algorithm. Now in this computed voronoi diagram of customers locations, all the 

vertices are located. By using these vertices, average or mean of vertices is found. 

After calculating mean of new voronoi diagram of customers, the old voronoi diagram 

of facilities is required. The old voronoi diagram is stored in main memory and can be 

used as and when required. Then the calculated mean of new voronoi diagram is 

located in old voronoi diagram. When located, the region of old voronoi diagram in 

which mean lies, is found. Then the facility as a site of this selected region is found. 

This facility is the required output.  

This facility will minimize the aggregate distance i.e. the sum of the distances of all 

the customers from this facility. Also this facility selected will be the one which tries 

to minimize the maximum difference i.e. the difference of the distance between the 

maximum distance and the minimum distance, by always preserving the first 

minimization criteria at priority (minimizing aggregate distance).  

As the facilities are discrete objects, it is not always possible to have a site that gives 

minimum for both the optimizing functions. Hence it always give the minimum 

aggregate distance with best possible solution for minimum of maximum difference in 

combination with first optimizing criteria. 

The time complexity of the proposed algorithm is same as time complexity of 

Fortune’s algorithm because it uses Fortune’s algorithm as the base algorithm. It spent 

constant amount of time on computing the mean. Hence overall complexity of 

proposed method is O(n log n).   
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Chapter 5 

Testing and Results 

 

5.1 Test case 1  

The proposed algorithm was tested by running many test using different values. Its 

step by step process is given here. First of all, the different facilities (T) were 

distributed in space. In real world these facilities may represent anything like theatre 

or hospital in a city. The exact locations of facilities are shown in terms of coordinates. 

These locations are fixed for a scenario i.e. the facilities are distributed in space are 

static in nature. They are not moving in space. 

 

Figure 5.1 Facilities located for test case1 

 

These facilities are distributed by clicking on the screen at appropriate locations. 

When these facilities were located on the screen, the voronoi diagram of these 

facilities was created simultaneously using the voronoi construction algorithm. Here 

fortune’s sweep line algorithm for construction of voronoi diagram has been used.  
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                                  Figure 5.2 After one customer added in test case 1 

 

When all sites or facilities are located, “add location” button is clicked to add the 

locations of the customers. The facilities in real world may represent any objective 

location like hospital, chemist, mall or theatre located in a big city. One such partition 

will be computed for any type of facilities input. For one type of facilities input, 

multiple queries can be done on that resulted voronoi diagram of the facilities located. 

Different customers may live at different parts of the city.  

One such customer is added in the figure shown above represented with the red dot. 

When one input as a customer is given, the proposed method just calculates the mean, 

m. In this case mean, m, and the customer’s location will be the same. Now it checks 

for in which region this mean m lies. When found the region it shows the site of the 

corresponding region as a result.  
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                                Figure 5.3 After two customer added in test case 1 

 

Location of second customer is added by clicking at proper place. When location of 

this customer is added the corresponding voronoi mean, m, is calculated by the 

proposed method. Then it calculates the region in which this voronoi mean, m, lies. 

When found the region in which the calculated voronoi mean, m, lies, it displays the 

site corresponding to that region as doubly co-centric circles. For two customers, the 

mean always lies at the mid of the line joining the two of them. It is also valid form 

the point of view of real world scenario, when two persons want to meet at a 

particular location they choose the location which is approximately equidistant from 

both. Hence it works correctly for two customers. 
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                            Figure 5.4 After three customers added to test case 1 

 

Location of third customer is added by clicking at proper place. When the location of 

this customer is added, the corresponding voronoi mean, m, is again calculated by the 

proposed method. Now the mean is shifted from the previous location towards the 

new region that will be the one containing the desired optimal facility site. Then it 

calculates the region in which this voronoi mean, m, lies. When found the region in 

which the calculated voronoi mean, m, lies, it displays the site (facility) corresponding 

to that region as doubly co-centric circles. In the above situation for three customers, 

the mean lies at the circumcenter of the triangle formed by three customers as the 

corners of the triangle. From the perspective of real world three persons would like to 

meet at a location approximately equidistant from three of them. The circumcenter of 

a triangle lies at equidistant from all three points of the triangle, hence the mean 

satisfy what is expected from the method   
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                                Figure 5.5 After four customer added to test case 1 

 

Location of fourth customer is added by clicking at proper place. When the location 

of this customer is added, the corresponding voronoi mean, m, is again calculated by 

the proposed method. Now the mean is shifted from the previous location towards the 

new region that will be the one containing the desired optimal facility site. Then it 

calculates the region in which this voronoi mean, m, lies. When found the region in 

which the calculated voronoi mean, m, lies, it displays the site (facility) corresponding 

to that region as doubly co-centric circles. 

    In this way any number of customers can be added to this system to find the facility 

at an optimal distance from every customer. It works dynamically as any customer 

can be added at any time and the resultant diagram is shown quickly. 
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5.1.1 Verification for test case 1 

Table 5.1 Aggregate Distance for test case 1 

Facility  Distance of 

Customer1 

(40,30) 

Distance of 

Customer 2 

(70,320) 

Distance of 

Customer 3 

(420,170) 

Distance of 

customer 4 

(470,50) 

Aggregate 

Distance 

(AD) 

T1(100,120) 108.166 202.238 323.882 376.563 1010.849 

T2(210,270)  294.109 148.661 232.594 340.588 1015.952 

T3(320,30) 280 382.884 172.046 151.328 986.258 

T4(460,270) 483.736 393.192 107.703 220.227 1204.858 

T5(580,125) 548.293 546.008 166.208 133.135 1393.644 

 

Table 5.2 Maximum difference for test case 1 

Facility  Distance of 

Customer1 

(40,30) 

Distance of 

Customer 2 

(70,320) 

Distance of 

Customer 3 

(420,170) 

Distance of 

customer 4 

(470,50) 

Max  

distance 

Min 

distance 

Max 

Diff 

(MD) 

T1 

(100,120) 

108.166 202.238 323.882 376.563 376.563 108.166 268.397 

T2 

(210,270)  

294.109 148.661 232.594 340.588 340.588 148.661 191.927 

T3 

(320,30) 

280 382.884 172.046 151.328 382.884 151.328 231.556 

T4 

(460,270) 

483.736 393.192 107.703 220.227 483.736 107.703 376.033 

T5 

(580,125) 

548.293 546.008 166.208 133.135 548.293 133.135 415.158 

 

5.1.2 Result of test case 1  

Facility T3(320,30) has minimum aggregate distance from all customers as shown in 

table 5.1. Also it minimized the maximum difference up to second best possible result. 

Hence proposed algorithm works fine here. 
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5.2 Test case 2 

 

Figure 5.6 Positions of facilities and customers for test case 2 

 

5.2.1 Verification for test case 2 

Table 5.3 Aggregate distance for test case 2 

Facility  Distance of 

customer 1 

(156,79) 

Distance of 

customer 2 

(322,237) 

Distance of 

customer 3 

(504,125) 

Distance of 

customer 4 

(644,346) 

Aggregate 

Distance 

(AD)  

T1 (85,240) 175.960 237.019 434.495 568.961 1416.435 

T2 (141,318) 239.470 198.298 411.118 503.779 1352.665 

T3 (225,63) 70.831 199.211 285.806 505.618 1061.466 

T4 (271,191) 160.527 68.680 242.167 403.923 875.297 

T5 (467,237) 348.833 145.000 117.953 207.870 819.656 

T6 (490,52) 335.090 249.898 74.330 331.892 991.210 

T7 (611,75) 455.018 331.308 118.106 273.002 1177.434 

T8 (616,317) 517.923 304.690 222.279 40.311 1085.203 
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Table 5.4 Maximum difference for test case 2 

Facility  Distance  

of Cust 

1 

(156,79) 

Distance  

of Cust 2 

(322,237) 

Distance  

of Cust 3 

(504,125) 

Distance 

of Cust 4 

(644,346) 

Max 

distance 

Min 

distance 

Max 

Diff 

(MD) 

T1  

(85,240) 

175.960 237.019 434.495 568.961 568.961 175.960 393.001 

T2  

(141,318) 

239.470 198.298 411.118 503.779 503.779 198.298 305.481 

T3  

(225,63) 

70.831 199.211 285.806 505.618 505.618 70.831 434.787 

T4  

(271,191) 

160.527 68.680 242.167 403.923 403.923 68.680 335.243 

T5  

(467,237) 

348.833 145.000 117.953 207.870 348.833 117.953 230.88 

T6  

(490,52) 

335.090 249.898 74.330 331.892 335.090 74.330 260.76 

T7  

(611,75) 

455.018 331.308 118.106 273.002 455.018 118.106 336.912 

T8  

(616,317) 

517.923 304.690 222.279 40.311 517.923 40.311 477.612 

 

5.2.2 Result of test case 2 

The facility T5(467,237) selected by the proposed algorithm works fine here also. It 

gives the minimum aggregate distance from all the available options. Also it gives the 

minimum of the maximum difference i.e. it minimizes the maximum possible 

difference between any two customers. Hence the proposed algorithm works as 

expected. 
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5.3 Test case 3 

 

Figure 5.7 positions of facilities and customers for test case 3 

 

5.3.1 Verification of test case 3 

                                Table 5.5 aggregate distances for test case 3 

Facility  Distance 

of cust 1 

(17,114) 

Distance 

of cust 2 

(40,324) 

Distance 

of cust 3 

(61,63) 

Distance 

of cust 4 

(205,215) 

Distance 

of cust 5 

(521,24) 

Distance 

of cust 6 

(565,338) 

Agg. 

Dist 

(AD)  

T1 

(48,154) 

50.606 170.188 91.924 168.434 490.540 548.767 1520.4

59 

T2 

(78,37) 

98.234 289.505 31.064 218.662 443.191 572.512 1653.1

68 

T3 

(109,245) 

160.078 104.890 188.223 100.578 467.531 465.387 1486.6

87 

T4 

(190,50) 

184.459 312.372 129.653 165.680 332.020 472.831 1597.0

15 



Page | 44  
 

T5 

(197,340) 

288.922 157.813 308.586 125.256 452.584 368.005 1701.1

66 

T6 

(224,175) 

215.801 236.764 197.770 44.28344 333.182 377.955 1405.7

55 

T7 

(333,132) 

316.512 350.304 280.615 152.555 216.813 310.258 1627.0

57 

T8 

(594,290) 

603.245 555.042 579.326 396.164 275.835 56.080 2465.6

92 

T9 

(600,51) 

586.394 623.000 539.133 427.693 83.486 289.126 2548.8

32 

 

 

                                 Table 5.6 Maximum Difference for test case 3 

Facility  Dist of 

cust 1 

(17,114) 

Dist of 

cust 2 

(40,324) 

Dist of 

cust 3 

(61,63) 

Dist of 

cust 4 

(205,215) 

Dist of 

cust 5 

(521,24) 

Dist of 

cust 6 

(565,338) 

Max 

dist 

Min 

dist 

Max 

Diff 

(MD) 

T1 

(48,154) 

50.606 170.188 91.924 168.434 490.540 548.767 548.767 50.606 498.161 

T2 

(78,37) 

98.234 289.505 31.064 218.662 443.191 572.512 572.512 31.064 541.44

8 

T3 

(109,245) 

160.078 104.890 188.223 100.578 467.531 465.387 467.531 100.578 366.95

3 

T4 

(190,50) 

184.459 312.372 129.653 165.680 332.020 472.831 472.831 129.653 343.17

8 

T5 

(197,340) 

288.922 157.813 308.586 125.256 452.584 368.005 452.584 125.256 327.32

8 

T6 

(224,175) 

215.801 236.764 197.770 44.283 333.182 377.955 377.955 44.283 333.67

2 

T7 

(333,132) 

316.512 350.304 280.615 152.555 216.813 310.258 350.304 152.555 197.74

9 
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T8 

(594,290) 

603.245 555.042 579.326 396.164 275.835 56.080 603.245 56.080 547.16

5 

T9 

(600,51) 

586.394 623.000 539.133 427.693 83.486 289.126 623.000 83.486 539.51

4 

 

5.3.2 Result of test case 3 

Here also the selected facility T6(224,175) is the right choice as it minimizes the 

aggregate distance and also it minimizes the maximum difference up to third from the 

minimum which is satisfactory as it is in addition to the minimum of aggregate 

distances. Hence proposed algorithm works fine in all three test cases including this 

one. 
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Chapter 6 

Conclusion and Future Scope 

 

In today’s fast pacing world new technologies and internet are proving very helpful to 

solve daily life problems. New internet and mobile applications have made life 

comfortable. Finding a facility near to many customers is such an advantage of new 

technology and internet era. The essence of all the facility location problems is to 

determine the location of the facility and the allocation of the demands of customers, 

under the condition of the minimum of the cost. This work presents an invaluable tool 

for decision makers to reach facility approximately nearer to all. The ultimate goal is 

to develop a reliable, effective, and robust system that can be used to support 

customers arriving at high quality decisions on the most suitable facility locations. 

The effectiveness of the proposed method has been confirmed from computational 

experiments. In real location problems, due to subjective judgment, imprecise human 

knowledge and perception in capturing statistic data, many parameters are of both 

fuzzily imprecise and probabilistically uncertain information. 

In this thesis work an algorithm to tackle nearest facility location for multiple 

customers has been proposed. It tackles the problem by considering not only the 

aggregate distances of all customers but also the maximum difference between the 

farthest customer and nearest customer. It takes time of order O(n log n) as it is based 

on voronoi diagram of order O(n log n) and its own time is of linear order. 

Previously work has been done on nearest facility location using different approaches 

like genetic algorithms, GPU systems, fuzzy logics or approximation. In this work 

voronoi diagram approach has been used. Further combination of two or more 

techniques may prove to be advantageous and can bring computation time down. Also 

more accurate and precise decision can result from the combination of two or more 

techniques. This kind of application may help in real life as to find any nearest facility 

and the facility may be anything like hospital, chemist shop, police station or any 

other emergency destinations.   
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Future scope 

The proposed algorithm can be implemented using hybrid techniques which is the 

combination of techniques to find the nearest facility. Also voronoi construction can 

be done using an approach specific to the situation. It can work much faster when 

tried to implement in distributed environment where local system find out there local 

optimal and then using these local solution a global solution can be obtained. 

 In this presented work, the algorithm has been used in a discrete manner i.e. 

facilities are placed at discrete location. The given algorithm can be used in a 

continuous environment where it desired to find the location which is placed in 

continuous space. 

 The proposed algorithm can be used by retail chain owner or any other 

businessmen to find the location optimal for opening the new branch of their 

business in a competitive environment. 

 Reverse of the given problem can be approached that requires the farthest point or 

facility to be found out using the same proposed algorithm in reverse manner. 

 The proposed algorithm may be used in higher and complex level of problem for 

e.g. in an environment where there are some type of radiation emitting sources. 

Now to find the location which will have the maximum effect of radiations or the 

location this will have the lowest impact of the radiations. 

 This thesis work presented the nearest facility location for customer in static 

environment i.e. both facilities are static and customers are also fixed at particular 

locations. This method can be extended to work in dynamic environment where 

either customer are moving or facilities are moving or both are in motion. 
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